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Abstract

Ground based measurements of the hydroxyl airglow started in Trondheim
(63.4◦ N, 10.4◦ E) 20. November 2012 using a linear InGaAs PDA detector
covering the ∼1450-1650 nm wavelength range. The instrument have suc-
cessfully recorded data with a time resolution of 1 minute through the whole
winter until 27th April 2013. A complete analysis scheme has been devel-
oped to derive rotational temperatures from the (3-1) and (4-2) P-branch
transitions. The method is based on least squares fitting a full synthetic
model of the OH bands to the recorded spectrums.

The analysis scheme has been used to analyse data for the whole measure-
ment period during winter 2012/2013. Average temperatures for the period
November-March are found to be 209.1 K and 207.6 K for the (3-1) and
(4-2) band respectively. The nightly averaged temperatures generally follow
the expected climatological trend of warm winter temperatures and cooling
towards summer. In January, the temperatures rise to ∼230 K, which is a
large deviation from predictions calculated with the MSISE model, but same
pattern is also observed over Andøya (69.3 ◦N). The difference of 1.5 K be-
tween the (3-1) and (4-2) temperature is consistent with model predictions
of the intensity distribution of the v = 4 vibrational state beeing higher in
altitude and therefore colder.

Results from three nights have been analysed in more detail, revealing
large variations in the OH airglow layer. The observed oscillations have peri-
ods ranging from ∼30 minutes to several hours, and variations in rotational
temperature up 47 K. Relative changes in the intensity is found to be typi-
cally 4-5 times larger then in the temperature. Both the temparture and the
intensity show a high level of covariation between the (3-1) and (4-2) bands,
but the results are generally more accurate for the (3-1) transition, because
the (4-2) P-branch is affected by a lower instrument sensitivity. Relative
errors in the (3-1) temperature is typically between 1-2%.

A detailed analysis of the analysis scheme is given, and some unresolved
issues and possible improvements are suggested. The instrument and it’s
operation is also desribed.





Sammendrag

Bakkebaserte nattlige målinger av hydroxyl airglow startet i Trondheim 20.
November 2012. Instrumentet som brukes er en lineær InGaAs fotodiode-
detektor som er konfigurert til å dekke bølgelengdeområdet 1450-1650 nm.
Målinger gjennom vinteren inntil 27. april er gjennomført med en tidsoppløs-
ning på 1 min. En komplett analysemetode for å beregne rotasjonstempera-
turer fra datene er utviklet. Metoden er basert på å tilpasse en full syntetisk
modell, basert på minste kvadraters prinsipp, til de målte spektrumene.

Analysemetoden har blitt brukt til å analysere data for hele målingsperi-
oden vinteren 2012/2013. Gjennomsnittelige verider for perioden november-
mars er 209.1 K og 207.6 K for henholdsvis (3-1) og (4-2) overgangene.
Nattlige temperaturgjenomsnitt følger generelt den forventede trenden med
varme vintertemperaturer og kaldere temperaturer mot sommeren. I midten
av januar stiger temperaturen til ∼230 K, som er en stor forskjell fra predik-
sjonene beregnet med MSISE modellen, men det samme mønsteret er ob-
servert over Andøya (69.3 ◦N). Forskjellen på 1.5 K mellom (3-1) og (4-2)
temperaturene er konsistent med at modellberegninger av intensitetsfordelin-
gen av v = 4 vibrasjonsnivået ligger høyere i atmosfæren og dermed er
kaldere.

Mer detaljerte analyser av tre netter i målingsperioden, avdekker store
variasjoner i OH airglow laget. De observerte variasjonene har perioder fra 30
minutter og opptil flere timer, og variasjoner i rotasjonstemperaturen på opp-
til 47 K. Relative endringer i intensiteten er funnet til å være 4-5 ganger
høyere enn i temperaturen. Både temperaturen og intensiteten viser en høy
grad av samvariasjon for de to båndene, men resultatene er generelt dårligere
for (4-2) båndene, fordi P-greinen er påvirket av en dårligere instrumentsen-
sitivitet i bølgelengdeområdet. Relative feilestimater i (3-1) temperaturen
ligger typisk mellom 1-2%.

Analyseskjemaet er beskrevet i detalj, og noen uløste problemer og mulige
forbedringer er foreslått. Konfigurasjonen av intstrumentet er også beskrevet.
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Chapter 1

Introduction

Airglow is a photochemical luminescence originating from the upper atmo-
sphere confounded to a layer between 80-120 km. The hydroxyl airglow
emissions was identified by A.B Meinel in 1950 [11]. Since then, this phe-
nomena has been used to investigate many aspects of the mesopause [18].
The mesopause is ranging from 85-95 km above ground (midlatitude). This
region of the atmosphere is too high to be reached by balloons and too low to
be effectively sensed by satellites. Ground based remote sensing is therefore
the optimal method to study this part of the atmosphere.

Gravity waves generated in the troposphere propagate all the way up
to the upper and middle atmosphere, where they eventually deposit their
energy. The interaction between the waves an the atmosphere modulate the
airglow emissions, and therefore, gravity waves can be detected by continu-
ously monitoring the airglow. It is now understood that most of the energy
which is driving the general circulation in the atmosphere, is originating in
the troposphere, and most of the energy is transported by gravity waves [12].
The short scale of important parts of the wave spectrum makes them difficult
to incorporate in climate models. To be able to include the important effect
of gravity waves in future models, more knowledge about the links between
the energy flux by gravity waves and the dynamics of the middle and upper
atmosphere is needed.

There is growing evidence for a cooling of the mesosphere, caused by a
warmer climate on the earth. However, the mesosphere is a region of the
atmosphere governed by large naturally variations, which can hide long time
scale variations such as climate change. Longer term measurements of the
meshospheric temperature is needed to reveal any additonal climate effects.

This project is a step towards getting more knowlegde about the meso-
sphere by collecting data which can be used for both short and long term
analysis. There is now a network of ground-based airglow observations as-
sociated with the Network for the Detection of Mesospheric change. Com-
parison of observations from Trondheim with observations from all over the
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world, may lead to a better global picture of the impact of gravity waves and
the change in mesospheric temperature.
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Chapter 2

Theory

2.1 Atmospheric structure

The atmosphere is divided into different layers with respect to their tem-
perature gradient (figure 2.1). From the earths surface, the first 13-15 km
of the atmosphere is the troposphere. This is where most weather phenom-
ena occur, as percipitation, thunder storms and clouds. The temperature
decreases with height, because the distance to the heat source, the earth,
increases. In the region between 15-20 km, which is called the tropopause,
the decline in temperature stops at a local minimum of about -60 ◦C. From
20 km and up to 45 km is the stratosphere. In this region, the vast majority
of the earths ozone is contained. Molecular oxygen and ozone are disas-
sociated by ultraviolet radiation from the sun. The exess energy in these
photochemical reactions results in heating, and the temperature continue to
rise up to the stratopause, which is located between ∼45-50 km. The next
region is the mesosphere. Here, the temperature gradient is negative be-
cause carbon dioxide, and other infrared active constituents, radiates away
the heat. Temperatures in the mesosphere can reach as low as -130◦C and
is the naturally coldest place in the atmosphere. The mesopause starts at
∼85 km and above is the thermosphere. In this region, the air is heated
by the sun directly because the density is so low that collision times for the
disassociated molecules are very long. Temperatures can reach 1000 K, but
the heat content is very low because of the low density.

Variation with latitude and season in atmospheric temperature profiles
arises because of the varying incoming solar radiation. In the summer, the
troposphere and stratosphere are logically warmer then in winter, but this is
not true for the mesosphere. The temperature in the middle atmosphere is
determined by a large scale circlulation from the summer pole to the winter
pole, which is wave driven [1][5]. Waves generated at low latitudes propagate
upward in the atmosphere with growing amplitudes as they encounter lower
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and lower density. Eventually, they break and the deposit momentum. The
friction force which arises, is anti-paralell to the zonal winds, and they are
therefore slowed by the breaking waves. The result is that the middle at-
mosphere is driven out of radiative equlibrium. Winds are kicked polewards
in the winter, and away from the pole in summer, and creates a flow from
the summer pole which expands and cools, and to the winter pole, which
compresses and heats.

52 AERONOMY OF THE MIDDLE ATMOSPHERE

The present chapter is directed towards an understanding of the effects
of atmospheric dynamics on chemical constituents.

The sections of this chapter deal with the following elements of
atmospheric dynamics: vertical structure of the atmosphere (Section
3.2), fundamental equations of atmospheric motions (Section 3.3),
transport of chemical constituents and the relative importance of
dynamical and chemical effects on photochemical species (Section 3.4),
atmospheric waves (Section 3.5), the mean meridional circulation and
the use of the transformed Eulerian formalism to illustrate the roles of
mean meridional and eddy transports (Section 3.6), the important role
of wave transience and dissipation (Section 3.7), vertical transport by
molecular diffusion in the thermosphere (Section 3.8), and finally, models
of the middle atmosphere (Section 3.9).
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Figure 3.1. Schematic representation of the thermal structure of the atmosphere
with its different layers.

Figure 2.1: Atmospheric temperature profile. Source: [5].
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Figure 3.2. Zonally averaged temperature (K) from the surface to
approximately 120 km altitude in January, based on Fleming et al. (1988).
Note the temperature minimum (less than 200 K) at the tropical tropopause, the

( )

temperature maximum (280 K) at the summer stratopause and the temperature
( )

minimum (less than 140 K) at the summer mesopause. The height of the
( )(

mesopause increases from approximately 90 km in summer to 100 km in winter.

(see Chapter 4). Radiative cooling occurs through infrared emission
associated with the vibrational relaxation of CO2, H2O, and O3.
Figure 3.3 presents a model estimate of the rate of net radiative heating
in the middle atmosphere. The large radiative heating rates found in the
stratosphere are due primarily to the large amounts of ozone found there.
The observed increase in temperature with altitude in the stratosphere
is a result of heating by ozone, illustrating the important relationship
of atmospheric chemical composition to the radiation budget and the
thermal structure of the atmosphere.

Comparison of Figures 3.2 and 3.3 reveals several interesting features.
For example, although the radiative heating rate at the summer
mesopause is large, the temperatures observed there (120-160 K) are
much lower than those found in the winter hemisphere (200-240 K).
The tropical tropopause, as we have already noted, is much colder
than its counterpart at middle and high latitudes, although no dramatic
variation in the radiative heating rate occurs there. Both cases illustrate
the importance of dynamical effects in establishing the temperature
structure of the middle atmosphere. Specifically, an air parcel displaced
adiabatically upward undergoes expansion and cooling while adiabatic

Figure 2.2: Zonally averaged temperatures for the Earth in January up to
120 km. The summer pole mesosphere (south) is the coldest place in the
atmosphere with temperatures reaching 120-140 K. The winter pole (north)
is much warmer than in the summer, reaching temperatures up to 220-230
K (latitude dependent). Source: [5].
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2.2 The hydroxyl layer

The OH layer is a thin layer of hydroxyl radicals located in the mesopause in
the upper atmosphere. During nighttime, the concentration peaks at 87± 3
km and has a half width of 7±3 km [2]. The main source of exited hydroxyl
molecule is the reaction [18]

H + O3 → O2 + OH∗. (2.1)

At night, ozone is produced by recombination with atomic oxygen and losses
are through reactions with atomic hydrogen [15]. Balance between loss and
production gives that the ozone consentration is given by

[O3] =
kO+O2+M[O][O3][M]

kH+O3 [H]
. (2.2)

From (2.1), the production rate of OH∗ is

P = kH+O3 [H][O3], (2.3)

and upon substitution of [O3] into this equation, one sees that the production
of OH∗ is directly proportional to the atomic oxygen concentration.

At daytime, ozone is destroyed by sunlight and disassociates according
to the reaction

O3 + hν = O2 + O. (2.4)

O2 and O quickly recombines tom form O3 after the sun has set leading
to a very high ozone consentration. The production of OH∗ (2.1) and the
intensity of the OH∗ emissions therefore often peaks in the beginning of the
night if the layer is not perturbed. A typical OH nightly variation is shown
in figure 2.3
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Figure 2.3: Typical OH intensity variation during a night. The intensity is
often maximum in the beginning of the night because the ozone production
rate is high right after sunset.
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2.3 Atmospheric gravity waves

Gravity waves in the atmosphere are analogous to waves on the water sur-
face. Water is denser than air, so the air in a wave trough is lighter than
the surrounding water and will experience a buoyant force. Water in a wave
crest is heavier than the surrounding air and will tend to fall. Waves in
the atmosphere arises in a similar manner. The density of air is dependent
on pressure and temperature. Temporal and spatial variations in these pa-
rameters will create density differences which the force of gravity will try to
smooth out. While waves on the water surface can be characterized by a sin-
gle horizontal wavelength, atmospheric gravity waves will have a horizontal
wavelength and a vertical wavelength.

There are many sources of gravity waves in the atmosphere. Waves gener-
ated by air flow over mountains, cities and valleys are referred to as mountain
waves or lee waves. Gravity waves can also be generated by convective activ-
ity in the atmosphere and are often observed over thunderstorms [12]. The

Airflow

Cloud Cloud

Mountain
range

Figure 2.4: Simple schematic figure of a mountain wave and lee wave. Clouds
may form if the water vapor condenses in the rising air. The water evaporates
as the air descends and the clouds dissolve [1].

simplest possible way to illustrate gravity waves is by considering uniform
flow over a surface corrugation. On the windward side of the corrugation,
the air is pushed upwards. The opposite will happen on the lee side, where
the air is accelerated downwards. Because the air is slowed down on the
windward side, the pressure will increase. On the lee side, the pressure de-
creases. The result is vertical columns of air oscillating up and down. In the
column of upward moving air, the air will cool down because of adiabatic
expansion. The opposite is true for the downwards moving column. The air
is compressed and heated as it is displaced downwards.

The wave pattern is stationary with respect to the ground, but if you
were sitting in a warm air balloon and blowing with the wind speed over
a corrugated land surface, you would experience waves just as you would,
sitting in a boat in the ocean an feeling the waves pass by.
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Figure 2.5: Schematic illustration of how gravity waves are generated by
a surface corrugation. On the windward side, the air is slowed down and
pushed upwards. On the lee side, the air is accelerated downwards. The
horizontal wave speed will be equal to wind speed, but in opposite direction.

2.4 Short introduction to spectroscopy of diatomic
molecules.

This section will give the reader a basic understanding of the molecular
spectroscopy of diatomic spectroscopy in order to understand the principles
behind the measurements in this project. It is heavily based on [10] but the
most of the results presented here can be found in any standard textbook on
quantum mechanics such as [4].

The energy of a molecule can roughly be divided into three parts

E = Ee + Ev + Er, (2.5)

where Ee is the total binding energy of the electrons to the nuclei, Ev is
the energy associated with the vibrational modes of the molecule, and Er is
the rotational energy. For ordinary macroscopical objects, the principles of
classical mechanics describes the system with indefinite precision. But for a
small object, such as a molecule, one must treat the system quantum me-
chanically. This means that the energy levels of the system must be found by
solving the Schrödinger equation. In quantum mechanics, the energy levels
of a bound system cannot take any values but are discrete.

2.4.1 Rotational spectrum

Classically, one can picture the rotation of a diatomic molecule as two masses,
m1 and m2, linked together at a distance r. This system is called the rigid
rotator. The rotational energy for this system is

Er =
1

2
Iω2,
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or expressed in terms of angular momentum P = Iω, where I is the moment
of inertia and ω is the angular frequency

Er =
P 2

2I
. (2.6)

This system can also be formulated in terms of a one mass system by intro-
ducing the reduced mass:

µ =
m1m2

m1 +m2
. (2.7)

The energy levels given by quantum mechanics for this system is

Er =
h2

8πI
J(J + 1). (2.8)

J is called the rotational quantum number. These energy elves are degnerate,
there are 2J + 1 states with the energy Er. If one divide equation 2.8 with
hc, it has the units of cm−1. These are called the term values:

F (J) =
Er
hc
J(J + 1) (2.9)

The prefactor is the rotational constant, defined as

B =
h

8πcI
. (2.10)

It is already mentioned that a molecule also can vibrate, and therefore a
diatomic molecule is not strictly speaking a rigid rotator. A correction term
must be added because the centrifugal force is stretching the molecule, and
the term values becomes

F (J) = BJ(J + 1) +DJ2(J + 1)2 + . . . (2.11)

where D is

D =
4B3

ω2
. (2.12)

From classical electrodynamics, radiation of light is associated with a
changing electric dipole moment. For two unlike atoms, there will always
be a permanent dipole moment with direction perpendicular to the axis of
rotation. In a molecule consisting of two like atoms, the center of positive
and negative charges will coincide, and therefore there will be no permanent
dipole moment, and therefore also no rotational spectrum. According to
quantum theory, absorption or emission of a photon can happen only through
transition between the rotational energy levels. The wavenumber of the
absorbed or emitted photon will be the the difference between the energy
levels in a transition between an upper state (′) and a lower state (′′)

ν =
E′

hc
− E′′

hc
= F (J ′)− F (J ′′). (2.13)

The change in rotational quantum number in the transition, ∆J , cannot
take any value but are restricted to ∆J = ±1.
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2.4.2 Vibrational spectrum

The simplest model of the vibration of a diatomic molecule is the harmonic
oscillator. As for the rigid rotator, it can be reduced to a one mass system
with mass µ given by equation (2.7). Classically, the energy of this system
is the sum of the kinetic energy and the potential energy

Ev =
1

2
µẋ2 +

1

2
k(r − re)2 (2.14)

Where k is the force constant and (r − re) is the displacement from the
equilibrium position. Inserting the potential into the Schrödinger equation
and solving for the energy levels, the result is

Ev = hν(v +
1

2
). (2.15)

Here ν is the frequency of the oscillation and v is the vibrational quantum
number. These energy levels are non-degenerate. There is only one state
with energy Ev(v). Again, after division with hc, (2.15) can be written as
term values:

G(v) = ω(v +
1

2
). (2.16)

The factor ω is the vibrational frequency ν/c with the units cm−1.
A diatomic molecule is not exactly a harmonic oscillator. The "spring

force" which arises because of the attraction and repulsion around the equi-
librium spacing of the atoms, does not increase indefinitely with increasing
displacement from equilibrium, but reaches reaches a constant value. This
is called an anharmonic oscillator. The potential can be approximated by
adding higher order terms to the quadratic classical potential

U = f(r − re)3 − g(r − re)3 + . . . (2.17)

When g << f (small anharmonicity) the term values is approximately

G0(v) = ω0v − ω0xov
2 + ω0y0v

3 − . . . , (2.18)

with the point of zero energy equal to v=0. x0 and y0 is generally much
smaller than one. In contrast to the quadratic potential, the spacing of the
energy levels will decrease with increasing v.

If the diatomic molecule has a dipole moment, it will change if the in-
ternuclear distance changes. If the dipole moment changes linearly with
the internuclear distance, classical electrodynamics gives that a photon with
frequency equal to the mechanical vibration frequency will be emitted or
absorbed by the molecule. The wavenumber of the photon will be

ν =
E(v′)

hc
− E(v′′)

hc
= G0(v

′)−G0(v
′′). (2.19)

For the harmonic oscillator, the allowed energy transitions are only those
with ∆v = ±1. For the anharmonic oscillator transitions with ∆v = ±2,±3 . . .
also appear, but the intensity will rapidly decrease with increasing ∆v.
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2.4.3 Rotational vibrational spectrum

Both rotation and vibration of a diatomic molecule will take place at the same
time. This means that a transition between energy states of the molecule
is associated with a ∆v and a ∆J . The fact that the rotational energy
levels are much smaller than the rotational energy levels leads to what is
called "fine structure splitting" of the vibrational levels and therefore the
rotational vibrational spectrum arises in the infrared.

When treating the vibration and the rotation of a molecule simultane-
ously, one must take into account the interaction between the vibration an
the rotational motion. Since the internuclear distance is changing when the
molecule is vibrating, the moment of inertia will change. Hence, the vibra-
tional constant B will be different for each vibrational level v. It can be
shown that the rotational constant for a vibrational state Bv can be ex-
pressed

Bv = Be − αe
(
v +

1

2

)
+ · · · (2.20)

where Be is the rotational constant at equilibrium separation and αe is a
constant much smaller than Be. Also, the constant representing the cor-
rection from the centrifugal force will be different at each vibrational level.
Similarly, it becomes

Dv = De + βe

(
v +

1

2

)
+ · · · (2.21)

where again, βe is much smaller than De.
The interaction between rotation and vibration does not influence the

selection rules. As before, ∆J can only be unity while ∆v can take any
integer value. If ∆v = 0, the spectrum is referred to as the pure rotational
spectrum. Adding the vibrational and the rotational part using (2.9), the
wavenumber of a transition from an upper state J ′ to a lower state J ′′ is

ν = ν0 +B′vJ
′(J ′ + 1)−B′′vJ ′′(J ′′ + 1). (2.22)

Where ν0 is the wavenumber of the pure vibrational (∆J = 0) transition
given by (2.19).

The fact that ∆J can be 0 or ±1 leads to branching of the transitions.
∆J = 0 is the Q-branch. By setting J ′ = J ′′ = J and rearranging the terms,
the wavenumber becomes

νQ = ν0 + (B′v −B′′v )J + (B′v −B′′v )J2. (2.23)

If ∆J = 1 the transitions are called the R-branch. Setting J ′′ = J and
J ′ = J + 1, the wave number is

νR = ν0 + 2B′v + (3B′v −B′′v )J + (B′v −B′′v )J2. (2.24)
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Finally ∆J = −1 gives the P-branch. Now, J ′′ = J and J ′ = J − 1, the
wave number becomes

νP = ν0 − (B′v +B′′v )J + (B′v −B′′v )J2. (2.25)

SinceB′′v > B′v, νQ will always decrease with increasing J , but theB′v−B′′v
is a small factor and the resulting lines in this branch will be close. The Q-
branch is more complex, where the wave number increases for small J but
decreases for large J . νP will always decrease for increasing J and the spacing
between the lines is larger then for the Q-branch because of the (B′v +B′′v )-
term.

2.4.4 Angular momentum of the electrons

Taking the angular momentum of the electrons into account, an additional
splitting of the lines occurs because of the total electron spin vector. The
spin of the individual electrons can take the values ±1

2 and therefore the
total spin vector can add up to be either integral or half integral. The
orbital angular momentum of the electrons is usually denoted L and the
corresponding component along the internuclear axis is Λ and can take the
values

Λ = 0, 1, 2, 3, . . . , L. (2.26)

This gives rise to the molecular states Σ,Π,∆,Φ, . . . respectively. The com-
ponent of S along the internuclear axis can take the values Σ = S, S−1, S−
2, . . . ,−S. Total angular momentum of the electrons is given by L+ S and
the quantum number of the total angular momentum along the internuclear
axis is Ω = |Λ + Σ|. It is not defined for Λ = 0.

Thus, for a molecule with Λ different from zero, the state splits into a
multiplet of 2S + 1 components. If the number of electrons is odd, giving
S = ±1

2 and the molecule is in the Π state, this state is said to be doublet.
So, in a rotational-vibrational transition, a molecule in the Π state can be
in the states Π 3

2
and Π 1

2
.

2.5 The Meinel lines

The Meinel lines were discovered by A. B. Meinel in 1950 [11]. The ob-
served spectrum was first believed to be an electronic band structure, but was
later determined to be the rotational-vibrational spectrum of the hydroxyl
molecule. The ozone reaction (2.1) produces OH∗ in vibrational states v = 6
up to v = 9 [18]. The molecule then radiates as it cascades down to lower
vibrational levels. The lower states can also be reached by collisional quench-
ing by other air molecules. This is believed to happen either a stepwise or
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by ’sudden death ’ reaction [18]:

OH∗(v′) +M = → OH∗(v′ − 1) +M (2.27)
OH∗(v′) +M = → OH∗(v′ = 0) +M (2.28)

The Meinel bands (3-1) and (4-2) means a transition between the vibrational
level v = 3 to v = 1 and v = 4 to v = 2. The lines in the each band are
denoted (branch)i(J

′′), i = 1, 2, where (branch) is Q,P or R referring to the
different branches as described in section 2.4.3. The index i represents the
two possible values of the angular momentum in the ground state of the OH
molecule which is 2Π. i = 1 refers to the 2Π 3

2
while i = 2 refers to the 2Π 1

2
.

The spectrum of the OH (3-1) and the (4-2) band is shown in figure 2.6. The
original lines are only 0.01 nm wide but are broadened by the instrument.
As mentioned in section 2.4.3, the Q-branch wave numbers is parabolic in
J causing the lines to overlap. This makes the branch very narrow and the
individual lines are not possible to distinguish with this resolution. The lines
in the R-branch are also very closely spaced such that only their peaks can
be separated from each other. The first line int the P-branch is the P2(2),
(since J = 0 does not exist in the 2Π state). Then follows P1(2),P2(3) and
so on. The P1 lines are the most intense, since the 2Π 3

2
energy levels are

lower and therefore more molecules will populate these states.
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Figure 2.6: The plot shows the Meinel (3-1) and (4-2) bands. The spectrum
is a night average of the night between 29-30 November 2012. This is a ’raw’
spectrum, so the intensity of the (4,2) P2(4) and P1(4) are really almost
twice as great.
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2.6 Thermal distribution of quantum states

For a gas in thermal equilibrium with it’s surroundings, a well known result
from statistical physics is that the relative number of molecules in two states
with different energy is given by the Boltzmann factor

N1

N2
= e−(E1−E2)/kT . (2.29)

From this result follows that the number of of molecules in vibrational state
v is ∝ e−G0(v)hc/kT . This is the number of molecules in state v relative to the
ground state. To find the actual fraction of the total population in state v,
the Boltzmann factor must be divided with the sum over all possible states,

Nv ∝
e−G0(v)hc/kT

Qv
. (2.30)

Qv is called the state sum or the partitionfunction, which in this case is

Qv = 1 + e−G0(1)hc/kT + e−G0(2)hc/kT + · · · . (2.31)

The actual number of molecules in state v is the total population N multi-
plied with the fraction of molecules in state v

Nv =
N

Qv
e−G0(v)hc/kT . (2.32)

Since there are 2J + 1 states with the same energy for each value of the
rotational quantum number J , the distribution of rotational lines is not given
only by the boltzmann factor e−EJ/kBT , but are weighted by the degeneracy
factor 2J + 1. For the lowest vibrational state, the number of molecules in
rotational state J will follow

NJ ∝ (2J + 1)e−F (J)hc/kT (2.33)

NJ will therefore first go trough a maximum before it decreases. The dis-
tribution for the OH molecule with B = 18.867 cm−1 is shown in figure 2.7
for a temperature 200 K. As before, the actual number of molecules in state
J is the the total population multplied with the Boltzmann factor divided
with the partition function, which for rotational states is

Qr = 1 + 3e−2Bhc/kT + 5e−6Bhc/kT + · · · (2.34)

The number of molecules in state J is then

NJ =
N

Qr
(2J + 1)e−BJ(J+1)hc/kT . (2.35)

If the probabilities were the same for all transitions and keeping B con-
stant, the intensity distribution would totally be determined by (2.35). This
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Figure 2.7: The distribution of rotational levels computed from (2.33) OH
with B = 18.867 and T = 200 K
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Figure 2.8: The intensity distribution (normalised) for a rotational-
vibrational transition with ∆J = −1 calculated with B = 18.871 cm−1. The
frequency units on the abscissa are arbitrary, but the numbers represent the
line spacing.
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theoretical intensity distribution is represented for different temperatures in
figure 2.8 for a transition with ∆J = −1. The effect of increasing temper-
ature is that the intensity distribution stretches towards higher frequencies.

For higher vibrational levels, one must include both the rotational and
the vibrational term values in the Boltzmann factor such that

NJ ∝ (2J + 1)e−(G+F )hc/kT . (2.36)

2.7 Intensities of rotational lines

A spectral line is the signature of a certain transition between energy levels
in a quantum system. The intensity of a spectral line, in terms of photons
emitted per second is

I = NnAnm (2.37)

where Nn is the number of molecules in the initial state. Anm is the proba-
bility per unit time for the transition to spontaneously occur. In the dipole
approximation of radiation [10], this transmission coefficient is

Anm =
64π4ν3nm

3h
|Rnm|2 (2.38)

which is also called the Einstein coefficient. For transitions between rota-
tional energy levels, the degeneracy factor 2J+1 must be taken into account.
The transmission coefficient becomes

Anm =
64π4ν3nm

3h

∑
|Rnimk |2

2J + 1
(2.39)

where the indices i and k represents the degenerate sublevels of the upper
and lower states and the sum is over all possible combinations of the sublevels
of the inital and final state.

If a line within a given transition branch is denoted J and the inital
energies of these lines εJ , we see from (2.35) that the intensity of the line
becomes

IJ =
N

Qr
Anm(2J + 1)e−εJ/kBT (2.40)

=
64πν4nmcN

3Qr

(∑
|Rnimk |2

)
e−εJ/kBT (2.41)

This can again be written, in terms of photons per second by dividing with
hν,

IJ =
ρCν3

Qr
SJe

−εJ/kBT . (2.42)
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SJ is the line strength of the transition, C a constant and ρ is representing
the initial consentration. The partition function can then be written as

Qr =
∑
J

SJe
−εJ/kBT (2.43)

It is assumed that the OH molecules which are in the lower vibrational
states are thermalized in the mesopause. This is because the relatively long
lived OH∗ state (2Π, v′ > 2) undergoes at least 10 collisions before they
emit a photon [18]. The rotational energy levels should therefore follow
a Boltzmann distribution, and the intensity distribution of the transitions
should be well represented with (2.42). The linestrengths, inital energies,
and theoretical wavelengths for the OH (3-1) and (4-2) transitions have been
calculated numerically [6] and are listed in table 2.1
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Table 2.1: Table of the initial energies, line strengths and the theoretical
wavelengths of the P-lines in the OH (3,1) and (4,2) band.

Line eJ SJ Wavelength
[cm−1] [nm]

(3,1)
P2(2) 10300.41 3.9839e+11 1518.70
P1(2) 10172.30 4.9798e+11 1524.06
P2(3) 10354.21 7.3932e+11 1528.76
P1(3) 10247.07 9.0706e+11 1533.19
P2(4) 10443.29 1.0852e+12 1539.51
P1(4) 10352.45 1.2943e+12 1543.16
P2(5) 10567.02 1.4404e+12 1550.94
P1(5) 10488.78 1.6789e+12 1553.96
(4,2)
P2(2) 13377.61 3.4350e+11 1597.25
P1(2) 13248.92 4.2855e+11 1603.05
P2(3) 13429.00 6.3772e+11 1607.96
P1(3) 13320.76 7.8114e+11 1612.81
P2(4) 13514.12 9.3671e+11 1619.43
P1(4) 13421.92 1.1156e+12 1623.47
P2(5) 13632.41 1.2443e+12 1631.68
P1(5) 13552.73 1.4469e+12 1635.05
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2.8 OH airglow response to gravity waves

There are many reports on gravity waves in the mesosphere detected by OH
airglow variations. Taylor et al. (1991)[20] detected a short period gravity
wave by simultaneously measuring changes in intensity and the OH (3,1)
rotational temperature. The temperature change was ≤10 K from a mean
of 163 K and the relative intensity change was 8 times greater than for the
temperature. The intensity and the temperature variation were found to be
well correlated in space and time with the intensity variation slightly lead-
ing the temperature change. An observation of a large scale oscillation in
airglow brightness and OH rotational temperature is described by Oznovich
et al. (1995)[13]. The oscillation is believed to be caused by a gravity wave
with period of about 8 hours. Peak to peak change in the derived tempera-
ture was 19 K, giving a relative change in the intensity of ∼2.8 larger than
the relative change in temperature. They also found that the temperature
variation was ahead the variation in intensity. A large wave event in the OH
airglow layer was observed by Taylor et al. (1995). The measured change in
OH intensity was >50% and the rotational temperature amplitude was ∼20
K. The jump in temperature is reported to lead the intensity by almost 15
min.

Gravity wave induced changes in the airglow layer temperature is caused
by adiabatic changes because of the compression and expansion of the air as
the layer is corrugated by the gravity wave [20] (and references therein). The
temperature variation will therefore be dependent on the background atmo-
spheric temperature profile. Since the temperature is brightness weighted,
the largest relative temperature changes occurs near the centroid height of
the layer.

The induced changes in the intensity is a more complex process. Because
the OH molecule is chemically active, the altitude profile will depend on
the distribution of the chemical species which it depends on and also the
temperature which will affect the reaction rates. A detailed analytical model
of the OH (8-3) emissions was developed by Swenson and Gardener (1998)
[19]. In this model, the OH volume emission rate peaks ∼ 3.75 km below
the centroid height of the OH layer because of the strong dependence of the
volume emission rate on the atomic oxygen concentration. They also show
that this layer difference will give a phase shift between the intensity and
temperature variations, which is dependent on the vertical wavelength of the
perturbing wave as well as the layer separation.
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Chapter 3

Instrument

3.1 Spectrometer

The spectrometer is mainly a spectrograph in combination with a linear
infrared InGaAs PDA detector. The spectrograph is equipped with an ad-
justable entrance slit and an external shutter. A liquid cooling system is
installed to ensure instrument stability. The parts comprising the instru-
ment system are listed in the table below.

Type Description
Spectrograph Andor Shamrock SR-163

Camera Andor iDus InGaAs µ1.7 DU491A
Shutter Melles Griot 04 UTS 201

Shutter control Melles Griot 04 ISC 850
Cooling Koolance Exos-2
Grating Andor SR1-GRT-0600
Slit Andor SR1-ASM-0020

The Shamrock SR-163 is a benchtop spectrograph based on the Czerny-
Turner layout. It’s focal length is 163 mm and it has a numerical aperture
of f/3.6. The gratings are interchangeable, and the angle of the grating,
and hence the wavelength range, is changed with a micrometer drive. The
grating in use has 600 lines/mm and a nominal dispersion of 7.11 nm/mm.

The Andor iDus InGaAs camera is a linear PDA detector with 1024
pixels. The wavelength coverage is 0.6-1.7 µm and the minimum exposure
time is 1.4 µs. Because of the low the bandgap of the InGaAs semiconductor,
it is subject to a very high level of dark current. The detector must therefore
be cooled to keep the thermal noise at an acceptable level, and prevent the
pixels from saturate. The pixels are vacuum insulated, and the camera has
a built in thermo electric element which can cool down the chip to -90 ◦C,
depending on the temperature of the surroundings. The Koolance Exos-2
liquid cooling system assures that heat is transported away effectively.
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The shutter protects the detector from sunlight during daytime, and is
used to update the dark signal level during measurements. The technical
details of the camera, grating and spectrometer are listed in table 3.1.

Table 3.1: Instrument specification details. For the iDus camera, the speci-
fications are listed for the high sensitivity mode. Source: [web, c].

Andor Shamrock SR-163
Aperture F/3.6

Focal length 163
Grating Single, interchangable

Slit height 3 or 6 mm
Size (H×B×L) 198× 216× 96 mm

Weight 3.5 kg
Andor SR1-GRT-0600-1900 grating

Lines/mm 600
Blase 1600 nm

Nominal dispersion 7.11 nm/mm
Max recommended wavelength 1715 nm

Andor iDus InGaAs µ1.7 DU491A
Pixels 1× 1024

Pixel size (W×H) 25× 500 µm
Max spectra pr. sec 97

Minimum exposure time 1.4 µs
Wavelength range 600 nm - 1.7µm

Digitization 16 bit
Minimum temperature -90 ◦C

Dark current (max cooling) 10.1 ke−/pixel/sec
Read noise 580 e−

Pixel well depth 5 e−

Sensitivity 90 e−/count
Linearity >99%

3.2 Calibration and noise

The instrument’s response and channel to wavelength relation were cali-
brated in the spring of 2011 and are described in detail in [3]. Before de-
ployment in 2012, the systems response was re-calibrated following the same
procedure and using the same equipment as earlier. A transfer source was
also scanned, so that the system’s response can be checked at a later time
by comparing the response to this source.
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The channel to wavelength relation for the instrument is

Wavelength[nm] = −0.86627 · 106 · SCN2 + 0.2071 · SCN + 1333.6, (3.1)

where SCN is the super channel number, ranging from 1-2080. The super
channel system consists of three overlapping regions where the middle one
covers the OH (3-1) and (4-2) bands, and starts at SCN 625. This means that
the wavelength range in this region is 1462.7-1672.8 nm. The micrometer
setting for this region is 7.9. Because of the very small second order term in
(3.1), the channel to wavelength range is very close to linear.

The system response to different detector temperatures is very non-linear.
Figure 3.1 shows the thermal noise measured as the standard deviation of
the resiudals between subsequent background scans, taken with 1 second
integration time. The plot shows that below -50 ◦C, the noise curve flattens
out at the read-out level which amounts to ∼15 counts. With an integration
time of 60 s, the thermal noise was measured in a similar manner to be ∼35
counts.
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Figure 3.1: Thermal noise of the detector at different detector temperatures,
measured with 1 second integration time.

As the chip temperature is reduced, more energy is needed to excite
the electrons across the semiconductor bandgap. At -50 ◦C, the wavelength
where the sensitivity is reduced to on half times the maximum, was found
to be ∼1643 nm. As a result, the OH (4-2) P-branch signal is affected by
the sharp drop in sensitivity in this region. To keep sensitivity over the
(4-2) P-branch, while keeping the noise relatively low, -50 ◦C was set as an
operating temperature for the instrument.

The system response and slit settings were checked against the transfer
source 12th January 2013, and the resulting response curve is plotted in fig-
ure 3.2. Originally, the response curve was converted to units of Rayleighs
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(
counts/sec
kR/nm

)
, but as only the relative intensities are of interest in the calcu-

lations, it can be normalised to maximum sensitivity, which is in the 1500
nm region. The sensitivity curve normalized to the value 3.7, is shown in
figure 3.2. The theoretical wavelength of the (4-2) P1(4) line is 1623.47 nm,
but is actually shifted to longer wavelengths on the instruments wavelength
scale. Reducing the the detector temperature would have moved the (4-2)
P-branch further into the region where sensitivity drops dramatically.
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Figure 3.2: Instrument response normalised to 3.7 (counts/sec)/(kR/nm).

3.3 Operation

The instrument started operating on 20th November 2012 at Dragvoll NTNU
where, the measurement site for the Atmospheric Physics Group at NTNU
is located. It is mounted on a metal installation in a chimney, with it’s
optical axis straight up through a borosillicate window. All the walls of the
chimney are covered with black paper to absorb incoming light. When in
operation, the bottom of the chimney is sealed with a dark blanket. A fan
blows air through a hose on the window from beneath, to prevent water from
condensate/freeze on it. The metal ring which seals the borosilicate window
on the top side, is designed in a way to allow water to escape from the
window. Normally, ice will melt and the water wil pour off or evaporate. This
solution seems to work well for most days, but with the changing weather in
Trondheim, where freeze-thaw conditions occur often during winter, having
the window covered with water, snow or ice is unavoidable on some nights.
Water absorbs broadly in the (4-2) and (3-1) wavelength region, and only a
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thin film of water is enough to filter out much of the OH signal. This can be
detected as the shorter wavelengths are affected first. Whenever the (3-1)
band is far below the (4-2), absorbtion by water is probably the reason. The
installed instrument is shown in figure 3.3.

Automatic aquisition software is developed for this instrument and is
also described in [3]. The instrument runs completely automatically, and no
user interaction is necessary unless the settings are to be changed. When
to take data is specified by setting a solar zenith angle interval. Standard
integration time since start up have been 60 s except for the nights between
7-8. December 2012 where the integration time was set to 15 s for experi-
mentation. The total integration can be read out in several accumulations,
but the current setting is to read out in one accumulation. All the operation
settings are summarized in table 3.2.

Table 3.2: Current standard operation settings for the Trondheim OH spec-
trometer

Detector temperature -50 ◦C
Entrance slit 2 µm

Grating angle drive 7.9 µm
Background cycle 5
Integration time 60 s
Accumulations 1
SZA interval above 95◦

Figure 3.3: The spectrometer installation seen from above.

3.4 Instrument slit function

The instrument slit function is generally the bandpass function of the spec-
trometer. It is the convolution of the image of the entrance slit with the
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image of the exit slit. In an ideal instrument, with no optical aberrations
and negligible diffraction, rectangular slits results in the typical triangular
or trapesiodal slit functions. Diffraction of light explains the rounding of the
edges of real slit functions, while the often seen assymmetry is caused by
various optical phenomena, affecting the light on the way from the entrance
slit to the exit slit. The instrument function is a result of a complicated
process and not easy to approximate with at mathematical function. It was
therefore decided to measure the spectrometer slit function by scanning a
monochromatic source for a long enough time to yield a smooth function.

The Hg I ion emits a strong, single standing line at 1529.58 nm. This
is well within the instruments wavelength range, and a source if this line
is therefore suitable to measure the slit function. A lamp from Bentham
Instruments was used for the measurements. The model name of the lamp
is CAL_CL_HG, and the serial number 8728.

Figure 3.4: The setup used to measure the instrument slit function. The
diffusive screen can be seen through the window and the mercury lamp is
attached to the chimney wall.

A diffusive screen was placed on top of the window and covered with a
dark blanket. The diffusive screen will ensure that the spectrometers entire
field of view is filled. The Hg-lamp was then attached to the wall of the in-
strument chimney and directed towards the diffusive screen. The Andor Solis
software was used to ensure optimal illumination and determine a suitable
exposure time to aviod detector saturation. The chimney was then sealed to
prevent daylight from entering. A picture of the setup is shown in figure 3.4.

The lamp was scanned 76 times with an integration time of 60 s and a
background update every 5th scan. The spectra were then 3 point median
filtered, divided with the response curve and averaged. A plot of the average
spectrum is shown in figure 3.5.

The line offset was removed by fitting a straight line trough the points
next to the line. The instrument function is taken to be the pixel interval
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352-385. The normalised instrument function is shown in figure 3.6. When
applying the instrument function, it is assumed that it is constant over the
wavelength range, and that the wavelength scale is linear, which should be
a good approximation according to the wavelength scale for the instrument
(3.1).
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Figure 3.5: The measured Hg-lamp spectrum used to estimate the instrument
function
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Figure 3.6: The normalised instrument function measured from with the
Hg-lamp.
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Chapter 4

Data analysis

The purpose of the measurements is to infer both the intensities and the
rotational temperatures of the OH (3-1) and (4-2) P-branches. This is done
by fitting a synthetic spectrum based on (2.42) to the osbserved data. The
lines included in the model, are the six lines from P2(2)-P1(4) (see figure
2.6). Taking only the instrument linehsape into account, the OH signal at
pixel i can be modeled as

Mi =
∑
J

IJwi,J , (4.1)

where IJ is equation (2.42) and wi,J is the instrument function for the J ’th
line. In other words, the intensity at the i ’th pixel is the contribution from all
the J lines, which is described by the instrument function. The instrument
response can be taken into account in two ways. Either, the spectra can be
divided with the response curve and converted to kR/nm, or the model can be
multiplied with it to have the same relative intensities, measured in detector
counts, as the observed data. The latter is preferred, since the response curve
will blow up the noise in the long wavlength end of the spectrum. There is
more in the measured signal than the hydroxyl emissions, and therefore a
baseline Bi must be added to the model. Estimating this background will
be detailed in section 4.2. Finally, the OH emissions are passing through
nearly 90 km of atmosphere, and therefore some atmospheric absorption
must be taken into account [8]. The transmission coefficients used are listed
in appendix A.1 and A.2. The synthetic model of the observed data then
becomes

Mi = Ri
∑
J

IJ
TJ
wi,J +Bi, (4.2)

with Ri beeing the response at pixel i and TJ the transmission coefficient for
line J .

The model is fit by minimizing the sum of squared errors between the
observed data, Di, and the model (4.2). Since the model is non linear, this
is done iteratively with the Gauss-Newton method.
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4.1 Dark signal

As mentioned in chapter 3, the detector is subject to a high level of dark
current because of the low semiconductor bandgap. For the detector tem-
perature of -50 ◦C, it is typically 80-140 counts/sec/pixel depending on the
temperature instrument’s surroundings. This is ∼5-10 times the strength of
the hydroxyl emissions.
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Figure 4.1: Upper: A raw scan. Middle: The nearest measured dark signal.
Lower: Upper plot minus the dark signal.

Both the dark signal and the signal scans contains the same amount of
thermal noise, so by subtracting the dark signal, one is left with double noise
in the residual spectrum. Therefore, a method to estimate the dark signal
in each pixel, described in [14], have been implemented get around this.

The method is based on the fact that the pixel to pixel variation in the
dark signal is almost constant (fixed pattern noise). It is therefore a nearly
linear relationship between the mean of the dark signal and the value at
each pixel. An estimate of the actual dark signal in each scan can be made
by averaging all the dark signals for each night, to reduce the influence of
thermal noise. The average dark signal is then scaled with the mean value of
the spectrum, and the dark signal in each scan can be found by multiplying
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the mean with this spectrum. However this is not an accurate approximation
for this instrument, as there is an underlying side to side structure which
changes over the course of the night. The method of removing the dark
signal is therfore as follows. For each night, all the dark signals are averaged.
This spectrum is then highpass filtered, taking out all variations extending
over more than 15 pixels. This is taken as the fixed dark signal pattern
for the night. In each background scan, the underlying structure is found
by lowpass filtering it, removing all variations shorter than 15 pixels. The
method is complete by adding the fixed pattern to the underlying structure.
Figure 4.2 shows how the dark signal for three different pixels vary through
night, and the result of estimating the dark signal. This shows that the
acutal dark signal is smoother than recorded. By not taking into account
the underlying variation and only scaling to match the average dark signal
for the night, som pixels are over/under-estimated (pixel 18 and 512). The
highpass-lowpass method estimates the dark signal better. It is not a perfect
method, but the systematic errors have not been found to exceed 3-4 counts
which is small compared to the thermal noise of ∼35 counts.
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Figure 4.2: The dark signal for three different pixels through a night. The
dashed black lines are the estimate of the actual dark signal. (a) is the mean
estimate, while (b) is the result of the lowpass-highpass method.

4.2 Baseline removal

In addition to the OH emissions, there will always be a baseline of blackbody
radiation, scattered light and a possible small offset because of the dark signal
drift. Since the temperature is dependent on on the relative intensities of
the lines, incorrect offset or subtracting too much or too little of one of the
lines will affect the temperature.

The instrument function reveals the pixels in the band where there are
no contribution from the hydroxyl emissions. This is shown in figure 4.3.
For the (3-1) band, this plot suggests that it is not sufficient to remove a
constant offset for the band, but that a baseline profile must be subtracted
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to bring all the no signal points to zero. The baseprofile in the (4-2) band
is much straighter than the in the (3-1), but a baseprofile is also subtracted
for this band.
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Figure 4.3: The estimated base profile for the (3,1) and the the (4,2) band.

The underlying baseprofiles are estimated by fitting a 3rd. degree poly-
nomial through the no signal points. This is based on the assumption that
the OH lines are sitting on a relatively smooth underlying atmospheric back-
ground profile. The no signal points are determined from the peaks, and are
for both bands the points left to P2(2)-line, in between the P2(2) and P1(2)-
line, between the P1(3) and the P2(4)-line and to the right of the P1(4)-line.
The estimated profiles and the no signal points are plotted in figure 4.4. The
result of subtracting these points for the same spectra are shown in figure
4.5.
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Figure 4.4: The estimated base profile (red line) and the no signal points
(green points) for the (3-1) and the the (4-2) band.

As mentioned earlier, there can be a small offset because the mean value
of the dark current drifts in time. Therefore, the minimum of the estimated
baseprofiles is subracted so that they have a zero point. A constant offset
is instead included in the Gauss-Newton fit, such that the model in general
becomes OH-model + baseprofile + offset. The baseprofile is treated in two
different ways. For spectra near the sunrise, the shape of the baseprofile is
included in the fitting routine. Assuming that it can be expressed as α× bi,
where α is a constant and bi is the baseprofile at pixel i, the full model of
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Figure 4.5: The estimated base profile (red line) and the no signal points
(green points) for the (3-1) and the the (4-2) band.

the recorded signal can be expressed

Mi = Ri
∑
J

IJ
TJ
wi,J + αbi + β, (4.3)

where β is the constant offset. When the sun has set and the sky is free
from residual sunlight, and under normal conditions, the baseprofile does
not change. It can therefore be subtracted from the spectrum, and the
model becomes

Mi = Ri
∑
J

IJ
TJ
wi,J + β. (4.4)

The experience is that this is a more stable way of handling the baseline, and
is therefore preferred as the general method. Including the baseline shape in
the fit, resulted in a higher level of random errors than (4.4). Fitting (4.3)
gives reasonable values down to the 5-10 scans near the sunset/sunrise for
many nights, but the fit is not always reliable. In analysis of the results, the
25 (30 minutes) first scans are disregarded.

It was first attempted to fit the baseprofile on a per scan basis, but as
there is relatively few points to estimate the baseprofile with, it resulted in
a too high level of random noise. Best results have been achieved by fitting
the profile from the night averaged spectrum and assuming it is constant
over the course of the night. Spectra where the cloud level is assumed to
influence the signal are exluded when averaging the spectra, as this might
influence the baseprofile. This will be explained in more detail in section 4.4

4.3 Gauss-Newton algorithm

The principle of the Gauss-Newton algorithm is to iteratively find the pa-
rameters wich minimizes the sum of squared errors (SSE ) between the data
and the model. With i refering to the i ’th data point, SSE becomes

SSE =
∑
i

(Di −Mi)
2 =

∑
i

r2i , (4.5)
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where ri is the i ’th residual. To first order, a Taylor expansion of the residual
function r = D −M in the paramters β from a starting point βk is

r(β) ≈ r(βk) + Jr(β
k)∆ (4.6)

where ∆ = β − βk and Jr is the Jacobi matrix with elements Jij = ∂ri
∂βj

.
Finding the ∆ which minimises the sum of square errors on the right hand
side, is a linear least squares problem and results in the normal equations
[16]

JTJ∆ = Jr. (4.7)

Starting from some initial paramaters and iteratively finding new parame-
ters βn+1 = βn + ∆ is the Gauss-Newton algorithm. Inserting the normal
equations (4.7), the iterations can be written

βn+1 = βn +
(
JTJ

)−1
JTr(β)

n (4.8)

Switching to the parameter τ = 1
T in (2.42) and merging the constant

and ρ into 1 factor (ρ) representing the intensity, for easier calculations, the
full model (4.3) becomes

Mi = Ri
ρ

Qr

∑
J

SJν
3
J

TJ
wi,Je

−τ εJ
kB + αbi + β. (4.9)

Computing the partial derivatives of this model, the elements of the Jacobi
matrix are

∂Mi

∂ρ
=

Ri
Q

∑
J

SJν
3
J

TJ
wi,Je

−τ εJ
kB (4.10)

∂Mi

∂τ
= −Ri

ρ

Qr

∑
J

SJν
3
J

TJ
wi,J

(
εJ
kB

+
1

Q

∂Q

∂τ

)
e
−τ εJ

kB (4.11)

∂Mi

∂α
= bi (4.12)

∂Mi

∂β
= 1

The jacobi matrix is a (n×4) matrix where n is the number of pixels included
in the model. For the model equation (4.4), the jacobi matrix is an (n× 3)
matrix without the ∂Mi

∂α -elements. With (2.43) the derivative of Q with
respect to τ becomes

∂Qr
∂τ

= −
∑
J

SJ
εJ
kB
e
−τ εJ

kB . (4.13)

The matrix (JTJ)−1 is called the covariance matrix and the diagonal
elements are the variances of the fitted parameters [16]. By combining the
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variance of the residuals, σ2r , and the covariance matrix in the last iteration,
the uncertainties of the fitted parameters can be found by

σβj =
√
Cjjσr. (4.14)

With T = 1
τ , the error in the temperature becomes

σT =

√(
∂T

∂τ
στ

)2

=
1

τ2
στ = T 2στ . (4.15)

Since the model intensity is proportional to ρ, the error in the model can be
expressed as

σI =
σρ
ρ
I. (4.16)

4.4 Cloud level indicator

Clouds will have a negative effect on the signal in two ways. Obviously,
clouds will block the OH emissions wich will result in poor signal to noise
ratios. The other effect is that clouds will scatter light into the spectrometer.
Among the light which is scattered into the spectrometer, is the light from
street lights. These lamps are commonly sodium wapor lamps, which is a
source of several closely spaced lines in the ∼1637-1640 nm region [web, b].
These lines show up in the far wavelength end of the spectrum as one broad
line on cloudy nights.

Night averaged spectrums from three nights with different cloud levels
are shown in figure 4.6. The signal is plotted in raw counts per second,
which means that the Na-signal in reality is many times stronger, as the
instrument sensitivity in this region is very low. The middle plot shows a
spectrum with a medium level of Na-intensity. This plot shows that the
OH signal is unaffected by Na-intensity at this level by comparing it to the
upper, which is Na-free. In the lower plot, the OH emissions are completly
drowned by the high Na-intensity.

It is felt that above a certain cloud level, the spectrum is changed so much
that the model fails to yield a good fit (see section 4.6.2). As a result, both
the temperature and the error estimate are no longer reliable. It is therefore
not possible to get rid of all the potential unreasonable fits with a limit on
the error, and spectrums are therefore exluded with an additional limit on
the Na-intensity. As figure 4.6 illustrates, although clouds will block OH
emissions and reduce the signal, it is still possible to obtain useable temper-
atures from many of these. The goal is to keep the spectra where to model is
a reasonable fit, and exlude most of the spectra where the model is not valid.
As a parameter to decide this, the ratio of the integrated Na-intensity and
integrated (4-2) Q-branch intensity is used. This will allow temperatures to
be calculated from spectra with a high relatively Na-intensity but where the
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OH intensity is high enough for the model to be reasonable. Also, as men-
tioned in section 4.2, the baseline will be estimated from the spectra with a
Na-OH ratio beneath a certain level, to have a correct baseline as possible
for the useable spectrums.

By looking on plots like figure 4.7, it is felt that the signal starts to be
affected with an Na-OH ratio somewhere > 0.5. Above a ratio of 2, one
often see the intensity significantly dropping. Usable values of the Na-OH
parameter therefore seems within these values.
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Figure 4.6: Spectra showing the effect of clouds scattering Na-light into
the instrument. Upper panel: No clouds. Middle: Partly clouded. Lower:
Completely clouded.
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Figure 4.7: Plots showing the effect of the absolute Na-intensity and the
Na-OH ratio the OH signal.
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4.5 Data products

For every night, the weighted mean of the temperatures and intensities are
calculated. The expression is

〈T 〉 =

∑n
i wiTi∑n
i wi

(4.17)

where the weighting wi is the inverse square of the individual measurement
errors σi,

wi =
1

σ2i
. (4.18)

The standard deviation of the mean then becomes

σmean =

√
1∑n
i wi

. (4.19)

The same principle is used to smoothe the temperature series. Each temper-
ature is then replaced with a weighted average of the nearby temperatures.

A rough estimate of the wavepower in the calculated time series of tem-
peratures and intensities is obtained from the spectral power densities. The
Lomb-Scargle method [16] is used to estimate the power spectrums because
the time series consists of more or less unevenly spaced data.

The Lomb-Scargle periodogram is calculated for a minimum frequency
of 1

T , where T is the measurement duration. Maximum frequency calculated
is 1.5 times the average Nyquist frequency

fmax = 1.5× N

2T
. (4.20)

where N is the total number of data points. The number of frequencies
calculated is

Np =
4× 1.5

2
N, (4.21)

where 4 is the oversampling factor. These principles are described in detail
in [16].

Total daily wavepower is found by integrating from the minimum gravity
wave frequency, the Brunt-Väisälä frequency of 5 minutes [1], to 0.8 times
the measurement duration. The reason for this is to exlude the changes with
periods longer than the time series itself. The time series are windowed with
a Hamming window. Noise is estimated as the mean power in the frequencies
below 5 min and is subtracted from the wavepower integral.

Figure 5.17 shows a Lomb-Scargle periodogram where the red lines form-
ing the large rectangle indicates the power that can be associated with gravity
waves.
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Figure 4.8: Lomb-Scargle periodogram of the (3-1) temperature series. The
red lines mark period boundaries that are realistic for gravity waves.

4.6 Computer algorithm

The computer program which performs the above described calculations,
and follows with this thesis, is written in Python 3.2. External libraries
used NumPy [web, e] and SciPy [web, f] which have objects for fast matrix
operations and basic routines such as polynomial fitting, filtering and fast
fourier transforms. The library matplolib [web, g] is used for plotting. The
developed routine, is not a complete computer program. There is very little
documentation written and error handling included. The focus in this sec-
tion is on the essential sub algorithms, with the purpose of explaining how
the results were achieved. The ideas and algorithms developed here also may
serve as a good basis for a more complete routine.

The programs functions are divided into four files, "importtools", "spec-
tools", "temptools" and "disptools", depending on their use in the main
routine which is located in the "ohdata" file. The file importtool contains
functions for extracting the signal from the raw datafile created by the aquisi-
tion program. Functions which perform operations on the spectra are located
in the spectools file. Such functions are for instance filtering, averaging of
spectra, peak locating and baseline estimation. Temperature calculations are
performed with functions in the temptools. Finally, functions for statistics
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and displaying are contained in the disptools file. The main routine "oh-
data", and the function which perform the model temperature calculation,
"get_temp_subbg", are shown in the appendix C.1 and C.2.

In the following, the main routine will be explained, and the essential
sub-algorithms will be explained along with it.

4.6.1 The main routine

The main routine starts with extracting the signal from the data files pro-
duced by the aquisition program. Dark signal scans are picked with a flag
in the data file. These are averaged, and the fixed pattern is found with a
highpass filter as described in section 4.1, using the FFT (fast fourier trans-
form) function in NumPy. The cruical part of the import signal routine is
shown below. Two backgrounds are averaged for the signals in between.
#Averaging dark signal
avgds = numpy.zeros(1024)
for i in range(1024):

avgds[i] = numpy.sum(darksig[:,i])/nds

fp = ohtools.highpass_vec(avgds) #The fixed pattern
...

elif(daymat[i,9] == 0 and i < numofscans-1):
n = i+1
while(daymat[n,9] == 1 and n != numofscans-1): #Finding next

background. If it the last scan is not a background,
take the last.
n += 1
if(n == numofscans-1 and daymat[n,9] == 1):

n = i
break

ds = ohtools.lowpass_vec(0.5*(daymat[i,11:1035]+daymat[n
,11:1035]))+fp #Estimating dark signal. Taking average of
two dark signals

After the signal is imported, all the induvidual spectra, exluding the
25 (∼30 minutes) first and last scans, and all spectrums with Na-OH ratio
above a certain limit, are averaged. This average spectrum is used to derive
important information for the rest of the calculations.

Because the average peak positions were found to change from night to
night, a peak location algorithm was implemented to avoid lineshape mis-
mathcing. The reason why the peak positions move, is most likely because
the temperature of the instrument’s surroundings change, as there is only a
metal plate separating the instrument from the outdoors.

The basics of the peak location algorithm, is to move the instrument
function from a predefined position to where the sum of the square residuals
of the average spectrum and the instrument function is minimum. This
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method was found to be more stable than just picking the position of the
maximum within a given range. The essential code is as follows:
...
while True:

k = start+1
r = spectrum[k+x] - scaled_instr[x] #Residuals
newsse = 0

for i in r:
newsse += i**2

if newsse < sse: #If sse has decreased, proceed. Else stop.
start += 1
sse = newsse

else:
break

peaks[index] = start + 14 #Position of the peak

As the peak positions move, everything else on the spectrum will also
move. Therefore, the peak positions are used to derive the no-signal points,
used to estimate the baseline, and also the pixel interval to include in the fit
(the band borders). The principle of finding these points, is to locate them
from a fixed number of pixels relative to the peaks.
def band_borders(peaks):

#BAND_BORDERS: Returns the borders of the (3,1) and (4,2) band in
#the following order: left 31, right 31, left 42, right 42

return [peaks[0]-14, peaks[5]+20, peaks[6]-15, peaks[11]+20]

def basepts(peaks):
#BASEPTS: Returns the defined no signal points.

#(3,1) Basepts:
leftp22 = numpy.arange(peaks[0]-15, peaks[0]-10)
rightp22 = numpy.arange(peaks[0]+15, peaks[0]+18)
...
return basepts31, basepts42

The baseline is estimated by fitting a third degree polynomial through
the derived no-signal points in the average spectrum. As already mentioned
in section 4.2, the minimum of the fitted polynomial is subtracted since the
offset is fit with the Gauss-Newton algorithm.

Next, all the individual spectra are filtered with a 3 point median filter.
This will eliminate the values of any hot pixels, which often stick up in
the spectrum, and also remove some of the random noise without changing
the shape of the lines. The difference between an unfiltered and a filtered
spectrum is shown in figure B.
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The peaks and band borders are then used to construct instrument func-
tion matrices for the (3-1) and (4-2) band. It is the elements wi,J , from
(4.1) and can be thought of as a frame to construct the models from. The
columns represent the distribution of each line intensity within the band,
and is determined by positioning the instrument functions so that the peak
positions match the ones found from the average spectrum. The algorithm
for this is
w_31 = numpy.zeros((borders[1]-borders[0], 6))
w_42 = numpy.zeros((borders[3]-borders[2], 6))

for i in range(6):
k = peaks[i]-borders[0]-14 #Start index for the line
for j in range(lineshppts):

w_31[k+j,i] = lineshape[j]
...

return w_31, w_42

All rows in w are next multiplied with the respective constant factors in the
model equation. The mathematical expression for the matrix is

Wij = Ri
Sjν

3
j

Tj
wij . (4.22)

The wavelength dependancy of the instrument response does not change,
so the correct interval of the response curve must found. This is done by
picking the interval according to the derived band borders. The code which
calculates (4.22) is
w_31, w_42 = instrfunc(peaks, borders) #Model frames

for i in range(6):
w_31[:,i] *= response_kr[borders[0]:borders[1]]*fr3s[i]/trc_winter[i]

#Multiplies the frames with the constant factors

for i in range(6):
w_42[:,i] *= response_kr[borders[2]:borders[3]]*fr3s[i+6]/trc_winter[i

+6]

return w_31, w_42

The program now has all the information it needs to go through all the
signal scans, and calculate the temperatures and intensities. Since the model
equations are different for the two ways of handling the baseline, which was
described in section 4.2, there are two different routines which perform the
model fitting. The principles for these are the same, and the only difference
is mainly that the routine to fit the baseline shape has an extra row of bi
elements in the jacobi matrix according to (4.13)

The fitting routine starts with constructing an initial model from the
input temperature guess, the instrument function matrix described above
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and the intensity of the input spectrum. The procedure is as follows. First
a "spectrum shape" is calculated by multplying each row in (4.22) with the
respective e−τ

εJ
kB values and then summing over each row. The calculation

of the partition function is a stright forward routine. An intitial value for
ρ is found by scaling the shape of the model to the match the maximum of
the spectrum intensity minus the offset guess. The procedure is as follows
rho_initial = numpy.max(spectrum - betaguess)/numpy.max(specshape)

tauguess = 1/tguess
qr = partfunc(tauguess)
wmod = expwmat(w, tauguess, shift)/qr #Divide by partition function
specshape = ohmodel(1, wmod) #Summing over each row in wmod

ohband = rho_initial*specshape
model = ohband + betaguess
intens_initial = numpy.sum(ohband)

Here, "expwmat" is a function which just multplies each column in w with
the exponential factor. The summing over the rows is done with the seperate
function "ohmodel".

With the initial model, an initial sum of squared errors is calculated,
and the Gauss-Newton iterations are ready to start. The iterations proceeds
until a desired accuracy limit is reached, which is measured as the change
in SSE, until a maximum number of iterations, or the normal equations
cannot be solved. The jacobi matrix from section 4.3 is constructed in the
following way
jacobi = numpy.zeros((speclen,3)) #Initialising Jacobi matrix
jacobi[:,0] = specshape
jacobi[:,1] = params[0]*jacobitau(wmod, params[1], qr, shift)
jacobi[:,2] = 1

The ∂Mi
∂ρ elements are identical to the already calculated "specshape" vector.

Furtherly, the function "jacobitau" calculates the ∂Mi
∂τ -elements according to

(4.12) by multiplying the "wmod" matrix with the factor(
εJ
kB

+
1

Q

∂Q

∂τ

)
, (4.23)

and again summing over each row. By using already calculated factors, the
CPU time of the total routine is greatly reduced. Especially saving many
calls to the exponential function, makes the algorithm much more computa-
tionally efficient.

The normal equations are solved with the function "solve" from the linear
algebra library in NumPy.
jtj = jacobi.T.dot(jacobi) #Calculating (J^T*J)
try:
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#Calculating (J^T*J)^-1*J^Tr:
invjtjjtr = numpy.linalg.solve(jtj,jacobi.T.dot(residuals))
except numpy.linalg.LinAlgError:

err_message_gn = ’Normal eqn. failure’
break

The changes are added to the parameters as desribed in section 4.3 and
a new model is constructed with the new parameters in the same way as
described above. If the Gauss-Newton iterations successfully converged, the
errors are caluculated by finding the inverse of the JTJ with the "inv" func-
tion from NumPy, as shown in the following code outline.
try:

covmat = numpy.linalg.inv(JTJ) #Computing covariance matrix
except numpy.linalg.LinAlgError:

err_message = ’Covariance fail’
return uncrt, err_message

sigma = numpy.std(residuals) #Std of residuals

temp = 1/params[1]
dtau = numpy.sqrt(covmat[1,1])*sigma #Error in tau
dt = temp**2*dtau
reldt = dt/temp*100
...

Errors and values are then checked to be within decided limits. If not,
"NaN" values are returned. The Q-branch and Na-intensities are found by
integrating under certain pixel intervals and subtracting a constant offset,
which is found from the pixels next to the lines. The pixels used are listen
in table 4.1.

Table 4.1: Pixels use to integrate Q-branch intensities and Na-intensity.

Branch Intensity Base
Q(3-1) 232-275 197-231
Q(4-2) 632-669 592-631
Na 911-1001 877-901

4.6.2 Result of the Gauss-Newton iterations

Figure 4.9 shows the the result of fitting the synthetic model (4.4) to the
average spectrum from the night between 14-15th January 2013. As the real
spectrum is an average of nearly 750 scans, it is practically a noise free and
should therefore give a good representation of the best possible fit and the
limits on the accuracy.

Figure 4.9 shows fitted models to the OH (3-1) and (4-2) spectra. The
measured instrument lineshape seems to model lines well, and the response
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curve reproduces the smaller details around the peaks. Some mismatch is
also clearly seen, and the distribution of these are shown in the plot of the
residuals. Especially, the model lie slightly above the measured P2(2) line for
both bands. Between the lines, one sees that the baseline estimation is not
100% correct. The over all mismatch is likely to be caused by contributions
from all the factors going into the model (4.1). The error estimate of 2.1
K in the (3-1) spectrum is a typcial value of the error estimate for night
averaged spectrums. The (4-2) error is typically 0-1 K higher. An error of
∼2 K, or around ∼1% is therefore the estimated best achievable accuracy
in the temperature. The statistics of the iterations are shown in table 4.2
and 4.3. For the average spectra, the algorithm successfully converges in
the temperature interval 110 to 1000 K. The standard inital value of 200 K
should therefore be safe in all cases. Intial guess on β is set to 1.0. With these
intial values and the temperature guess updated from the last calculations,
the Gauss-Newton algorithm converges in the vast majority of spectrums
with 2-3 iterations.

It generally seems as the temperature changes much faster than the error
estimate. For example, calculating the temperature of the same (3-1) band
without subtracting any baseline results (figure 4.10 in a temperature of
251.3 K and an error estimate 3.6, which is far from the true value. The
error estimate is proportional to the standard deviation, which does not take
into account that there is a linear trend over the band. It seems therefore
only to be a reasonable estimate if the residuals are straight (as in figure 4.9)
over the band. This analysis shows that one should look up for effects which
can cause this, as incorrect baselines, and some of the lines beeing affected
by H2O absorbtion, which was mentioned in section 3.3.
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(c) (3-1) residuals
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(d) (4-2) residuals

Figure 4.9: Plots showing the result of fitting the model and the residuals
between the model and the data.
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Figure 4.10: Result of calculating the temperature of the same (3-1) band in
figure 4.9 without the baseline subtracted. The temperature changes much
more than is indicated with the error estimate. The plot of the residuals
shows that there is a linear trend over the band. This will not necessarily
increase the standard deviation.
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Table 4.2: Result of the Gauss-Newton fit on the nightly averaged (3-1)
P-branch 14-15th January 2013.

Before iteration:
Initial temperature: 200.00 K
Initial intensity: 889.40 counts/sec
Initial rho: 3.23e-41
Initial beta: 1.0
Initial SSE: 72.83
After iteration:
New Temperature: 233.69 ± 2.13, acc: 0.91% K
Real intensity: 768.47 ± 14.07 counts/sec, acc: 1.83%
Model intensity: 768.47 ± 6.85 counts/sec, acc: 0.89%
New rho: 3.635e-41 ± 3.240e-43, acc: 0.89 %
New beta: 0.503 ± 0.042, acc: 8.40 %
New SSE: 20.93
Iterations: 3
CPU time: 0.027046 s

Table 4.3: Result of the Gauss-Newton fit on the night averaged (4-2) P-
branch 14-15th January 2013.

Before iteration:
Initial temperature: 200.00 K
Initial intensity: 868.00 counts/sec
Initial rho: 4.70e-41
Initial beta: 1.0
Initial SSE: 70.99
After iteration:
New Temperature: 230.29 ± 3.04, acc: 1.32% K
Real intensity: 733.45 ± 16.75 counts/sec, acc: 2.28%
Model intensity: 733.45 ± 9.61 counts/sec, acc: 1.31%
New rho: 5.355e-41 ± 7.018e-43, acc: 1.31 %
New beta: 0.666 ± 0.050, acc: 7.57 %
New SSE: 20.93
CPU time: 0.030163 s

49



4.6.3 Calculating nocturnal statistics

The weighted means (4.17) and standard deviation of the means (4.19) are
computed with the following code
def wgt_mean(values, errors):

#WGT_MEAN: Calculates the weigheted

nofvals = len(values)
sumofw = 0
wgmean = 0

for i in range(nofvals):
if math.isnan(values[i]): pass
else:

w = 1/errors[i]**2
sumofw += w
wgmean += w*values[i]

if(sumofw != 0 and wgmean != 0):
return wgmean/sumofw, numpy.sqrt(1/sumofw)

else:
return float(’nan’), float(’nan’)

The wavepower calculation routine starts with counting the number of
’nan’ values in the data set. If the number of ’nan’ values is greater than 1/3
of the total number of points, the routine does not proceed. The next step
is to assign a minute number to the each datapoint, with the first usable
data point as the zeroth minute. Time jumps in the data set is chekced by
calculating the time difference between each data point as the code below
shows.
minutes = [] #Number of minutes since start
newdata = [] #New datavector
m = 0 #Minute count

for i, time in enumerate(timevec):

if i < len(timevec)-1:
td = timevec[i+1]-time #Time between data points

if td.seconds >= 120: #Check for a background scan between
m += 1

if math.isnan(data[i]):
pass

else:
minutes.append(m)
newdata.append(data[i])

m += 1

The mean is then subtracted from dataset, and is next windowed with a
Hamming window to remove the "foots" at the beginnning and the end of
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the dataset. This is done with the function "hamming" in NumPy. The
frequencies to be calculated is determined by the equation in section 4.5.
They are converted to angular frequencies and periods with the code below.
freq = numpy.linspace(minfreq, maxfreq, nout) #Linar spacing of "nout"

frequencies bewteen the maximum and minumum freqency
w = 2*numpy.pi*freq
periods = 1/freq[::-1] #Reversing frequency vector

The Lomb-Scargle periodogram is calculated with the "lombscargle" routine
in the ScyPi signal module. This function returns the non normalised peri-
odigram. To normalise it, each value must be transformed by

√
4× pdgi/N ,

where pdgi is the value of non normalised periodogram and N is the length
of the dataset.
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Chapter 5

Results

5.1 Nightly averaged temperatures and intensities

Figure 5.1 and 5.2 shows the calculated nightly average rotational tempera-
tures and intensities for the OH (3-1) and the (4-2) transitions in the period
24th November 2012 - 27th April 2013. The results are obtained by exluding
every caluculated temperature with errors exeeding 5% or 10 K and 10% or
50 counts/sec on the intensities. Also, every spectrum where the Na-OH-
ratio is greater than 1.5 is disregarded.

The measurement period starts with a relatively warm period with tem-
peratures around ∼220 K in the last part of November before it cools down
to ∼200 K for the most of December. During the days between 10-14th Jan-
uary 2013, the temperature rises 37 K from below 200. It reaches the winter
record on 25. December with a (3-1) temperature of 237 K and 235 K (4-2)
temperature. After this warm period, the temperature decreases steadily
towards summer with the (3-1) temperature reaching 175 K on 27. April
2012. A straight line fit bewteen the dates from 1. jan - 27. april yields a
daily decline of 0.38 K for the (3-1) temperature and 0.35 K for the (4-2). A
plot of the line fits is shown in figure B.1. The average winter temperature
(24. Nov - 31. March) is 209.1 K for the (3-1) and 207.6 K for the (4-2).
Standard deviations in the same period are 11.7 K and 10.8 K respectively.

For the vast majority of the days, the (3-1) and the (4-2) temperature
follow eachother closely with the (3-1) typically 1-4 K higher. The systematic
execption seems to be the last part of April where most of the days have a
slightly highter (4-2) temperature.
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Figure 5.1: Nightly averages of the OH (3-1) and (4-2) P-branch rotational
temperatures between 24th Nov 2012 and 27th April 2013.

The nightly averaged OH intensities show many of the same features as
the temperature plot. It is relatively calm in December before the intensities
rises again in January. In the period until March the intensity shows huge
day to day variations. During March and April, the intensity varies more
smoothely, and seem to follow more or less the same pattern as the tempera-
ture variations, but it does not show the same decline towards summer. The
(4-2) intensity is steadily below the (3-1) intensity execpt for some nights.

2012-Dec-01 2013-Jan-01 2013-Feb-01 2013-Mar-01 2013-Apr-01
Time

0.0

0.2

0.4

0.6

0.8

1.0

In
te

ns
it

y
[c

ou
nt

s/
se

c]

(3,1
(4,2)

Figure 5.2: Nightly averages of the OH (3-1) and (4-2) P-branch intensites
between 24th Nov 2012 and 27th April 2013. The intensity scale is 0-1000
counts/sec.

In figure 5.3 is the (3-1) temperatures plotted together with tempera-
tures calculated with the MSISE 1990 model [9]. The model is empirical
and describes the neutral temperature and densities in the Earth’s atmo-
sphere. Temperature is calculated with a height resolution of 1 km and a
time resolution of 2 minutes. It is averaged in altitude by weighting with a
Gaussian profile centered at 87 km with about 8 km FWHM to simulate the
distribution of OH with altitude. The temperatures are calculated for the
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year 2012 and are repeated into the beginning of 2013. From the plot, one
sees that the derived OH (3-1) temperature follows the trend of decreasing
temperatures in December, but the model shows no trend of the large in-
crease in the January temperatures. After the warm period, the OH (3-1)
declines in relatively good agreement with the MSISE model.
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Figure 5.3: The derived OH (3-1) rotational temperatures plotted together
with neutral atmospheric temperatures calculated with the MSISE 90 model
for the year 2012.

A photochemical equilibrium model has been used to calculate altitude
distributions for the volume emission rates for of different OH vibrational
states. From this model, which is plotted in figure B.3, it is derived that
the altitude difference of the v = 4 and v = 3 vibrational states emission
rates is ∼1 km. Figure 5.4 shows altitude profiles of the atmospheric neutral
temperature calculated with the MSISE profile for 14th January and 25th
April 2013 at 01:00 UTC. The temperature gradient in th 85-90 km region is
approximately -2.1 K/km and -1.2 K respectively (linear fit between 86 and
89 km) and also thereby giving the estimates of the temperature difference
between the measured (3-1) and (4-2) rotational temperatures.

80 85 90 95 100
Altitude [km]

180

185

190

195

200

205

210

215

220

225

Te
m

pe
ra

tu
re

[K
]

(a) 14 January 2013

80 85 90 95 100
Altitude [km]

178

180

182

184

186

188

190

192

194

196

Te
m

pe
ra

tu
re

[K
]

(b) 25 April 2013

Figure 5.4: Temperature profiles for two different days calculated with the
MSISE model for the altitude range 80-100 km.
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5.2 Errors

Typical errors of the nightly averaged temperature is 0.12-0.20 K mid winter
when most of the scans from each night are usable. At the end of April, these
errors have increased to 0.20-0.40 K as the measurement duration decreases
towards summer.

Relative error in the (3-2) temperature is plotted against intensity for
all the calculated temperatures used to produce the nocturnal means. The
plot shows that the intensities are lie in the range 200- 800 counts/sec with
an errors in the range 1-2%. It also shows that the error never reaches zero
but hits a floor just above 1%. This agrees well with the error calculated
from night averaged spectrums in section 4.6.2, where the noise is negligible.
The cluster at 500 counts/sec and 3% error is caused by the the two nights
between 7-8. December 2012 where the instrument was run with 15 sec
integration time which produced around 2500 spectra each night. The same
plot with these days excluded is shown in figure B.2.

Figure 5.5: Relative error in the (3,1) P-branch rotational temperature as a
function of intensity. All individual calculation from all days between 24th
November 2012 - 27th April 2013 are included.

The same plot with logarithmic axes is shown in figure 5.6. This empha-
sises the effect of fitting a non-linear model with errors increasing exponen-
tially. The cut off at 5% is clearly seen. Both figure 5.5 and 5.6 shows that
there is not much data with errors higher than 5% and that these are spread
on all intensities.
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Figure 5.7 shows the same type of plot with data from similar measuer-
ments on Rothera, Antarctica. The integration time on this instrument was
15 minutes. It shows the same non-linear relation between the intensity and
the temperature error.

Figure 5.6: Log-log plot of the relative error in the (3,1) temperature as a
function of intensity.

Figure 5.7: Uncertainty in temperature vs. Intensity for measurments of
the OH (4,2) P-branch rotational temperature on Rothera, Antarctica. The
integration time on the instrument was 15 minutes.
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5.3 Gravity waves

In this section, three nights of OH emission measurments are described in
more detail with a focus on gravity waves. In figure 5.8, 5.11 and 5.14 the
OH (3-1) rotational temperature (blue) is shown togheter with the intensities
of the OH (3-1) and (4-2) P- (blue, red) and Q-branches (green, purple) and
the Na intensity (black). The black curve in (3-1) the temperature plot is 5
minute smoothed with weighted averages. The (3-1) and (4-2) temperature
are plotted together in figure 5.9, 5.12 and 5.15 to show the covariation of the
two tempertatures and intensities. Relevant period intervals of the Lomb-
Scargle periodogram for the nights are shown in figure 5.10, 5.13 and 5.16.
Mentioned periods are marked with red lines. Also, the statistics for each
night are listed in table 5.1, 5.2 and 5.3. Relative change in intensity over
relative change in temperature is calculated as

η =
(Imax − Imin)/(Imax + Imin)

(Tmax − Tmin)/(Tmax + Tmin)
. (5.1)

5.3.1 29-30th November 2012

This night is belongs to the relatively warm period at the end of November
2012. It shows clear periodic variations with long and short periods in both
the intensity and the rotational temperature. The intensity variation is dom-
inated by a large scale 2 hour period oscillation which the temperature in
some sense seem to follow. Special for this night are the very distinct wave
pattern in the rotational temperature seen in both bands bewteen 19:00 and
21:00. The variations have amplitude of ∼10 K and period of ∼30 min. In
the same time interval, a similiar clear wave pattern cannot be seen in the
intensity, but there is some structure and their peaks and periods seem to
match the temperature variation. In the last large variation between 22:45
and 00:45 the relative intensity change is nearly 5 times greater in the inten-
sity then in the temperature.

Band (3,1) (4,2)
〈T 〉 221.87 K 217.26 K
σT 0.13 K 0.17 K
〈∆T 〉 3.13 4.08
〈I〉 563.73 c/s 510.52 c/s

Std. of T 6.67 K 6.42 K
Std. of I 76.27 c/s K 65.62 c/s

Table 5.1: Nocturnal statistics 29-30. February 2012

The Lomb-Scargle periodogram of the temperature series is plotted in the
1-300 minute period region. Two periods have been marked at 33 and 196
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min. As expected, most of the power is comes from the ∼3 hour oscillation,
but the ∼30 minute is also clearly seen.
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Figure 5.8: Plots of the OH (3-1) rotational temperature and the correspond-
ing intensity variations during the night of 29-30. November 2012.
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Figure 5.9: 5 minute OH smoothed (3-1) and (4-2) temperature series and
their corresponing intensity variation during the night of 29-30th November
2012.
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Figure 5.10: Lomb-Scargle periodogram of the OH (3-1) and (4-2) rotational
temperature 29-30th November 2012 in the 1-300 minute region. The two
marked periods are 33 and 196 minutes.
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5.3.2 7-8th Febrary 2013

A long period large amplitude variation in both rotational temperature and
the intensity shows up in the OH emissions this night. For the largest of the
variations between 21:00 and 03:00 the temperature rises ∼47 K from 188
K while the intensity rises from 350 to 900 detector counts/sec. This gives
a relative change in the intensity ∼4 times greater than for the rotational
temperature. The intensity and the temperature seem in general to be co-
varying, but the temperature starts to rise almost 2 hours before the intensity
in the largest of the variations.

Band (3,1) (4,2)
〈T 〉 214.88 K 211.53 K
σT 0.16 K 0.17 K
〈∆T 〉 4.42 5.04
〈I〉 534.96 c/s 503.23 c/s

Std. of T 12.62 K 10.66 K
Std. of I 172.76 c/s 143.77 c/s

Table 5.2: Nocturnal statistics 7.-8. February

The periodogram is plotted for periods between 10 and 600 minutes. It
is obviously dominated by the large scale variations mentioned above. The
(3-1) power peaks at a period of 410 minutes. A peak of 138 minutes is also
marked, corresponding to the smallest of oscialltions seen in the rotational
temperatures.
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Figure 5.11: Plots of the OH (3,1) P-branch rotational temperature and the
corresponding intensity variations during the night of 7-8th February 2013.
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Figure 5.12: 5 minute smoothed OH (3-1) and (4-2) temperature series and
their corresponing intensity variation during the night of 7-8th February
2012.
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Figure 5.13: Periodogram of the OH (3-1) and (4-2) P-branch rotational
temperature 7-8. February 2013. The red lines mark periods of 138 minutes
and 410 minutes.
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5.3.3 19-20th February

A clear, persistent wave pattern can be seen in the OH airglow emissions this
night. The oscialltions starts around 22:00 and lasts until 03:00. The period
of the variations are ∼1 hour. They start with a relatively large amplitude
of ∼15 K in the temperature and ∼250 counts/sec in the intensity and then
gradually fades away. This gives a relative change in the intensty around 5.5
times greater than in the temperature. The timeseries plots shows that the
temperature variation are clearly in phase with the intensity. The co-plot of
the (3,1) and (4,2) temperatures shows that the (4,2) temperature follows
the same pattern, but it is not so clear for the last oscillations.

Band (3,1) (4,2)
〈T 〉 201.01 K 199.94 K
σT 0.12 K 0.13 K
〈∆T 〉 3.01 3.33
〈I〉 484.53 c/s 440.41 c/s

Std. of T 7.63 K 5.82 K
Std. of I 94.52 c/s 83.24 c/s

Table 5.3: Nocturnal statistics 7.-8. February

The ∼60 minute period sticks well up in the periodogram, but it also
shows that there is almost as much power coming from a 30 minute oscilla-
tion. Most of the power comes from a ∼85 minute variation.
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Figure 5.14: Plots of the OH (3-1) rotational temperature and the corre-
sponding intensity variations during the night of 19-20th February 2013.
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Figure 5.15: 5 minute OH (3-1) and (4-2) smoothed temperature series and
their corresponing intensity variation during the night of 19-20th February
2012.
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Figure 5.16: Periodogram of the OH (3-1) and (4-2) P-branch rotational
temperatures for periods between 15 and 120 minutes 19-20th February 2013.
The red lines mark periods of 32, 62 and 85 minutes.
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5.3.4 Variance of wave activity

Figure 5.17 shows the development of the wavepower esitmated with the
method described in section 4.5. Both the the wavepower in the temperature
and the intensity shows very large day to day variations but also a clear trend
with decreasing wave activity towards summer.
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Figure 5.17: Estimated wavepower in the OH (3-1) rotational temperature
and in the OH (3-1) and (4-2) P-branch intensities from 24th Nov 2012 -
27th April 2013.
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Chapter 6

Discussion

6.1 The results

Although the derived OH temperatures is following the climatological trend
with warm winter temperatures and cooling towards summer, in agreement
with theory and the MSISE model, there are also large and important dif-
ferences. The observed large day to day variations, and the high January
temperatures are not predicted by the model. On the 6th of January oc-
cured a large stratospheric warming, which are associated with a cooling of
the mesosphere [21]. Becasuse of bad sky conditions, there are no usable
data in the period 1-9 January, and the possible effect is therefore not ob-
served in the mesosphere over Trondheim. If this event could be linked up
with high January temperatures, is an interesting study. High January tem-
peratures (220-230 K) have been observed earlier [7][17], and are also seen
in the results from Andøya (69.3◦N), which is shown figure 6.1 (C. Schmidt,
personal communication).

The (4-2) temperature beeing slightly lower than the (3-1) is consistent
with the model predicted centroid height of the v = 4 emission distribution
beeing higher in altitude and therefore colder, according to temperature pro-
files calulated with the MSISE model. The difference between the mean (3-1)
and (4-2) temperatures of 1.5 K seems therefore not to be too far from real-
ity. As the baseline is fitted indvidually for the (3-1) and (4-2) P-branches,
close values of the two temperatures is a good sign that they are reasonable
values, with respect to the discussion in section 4.6.2.

The nightly variations in the OH airglow layer presented in section 5.3,
show a wide range of periods and amplitudes in both the intensity and the
temperature. In general the, covariation of the intensity and the temperature
are well correlated in time. The observed phase differences between the
variations does not show any consistent pattern on the phase lag between
the temperature and the intensity variations.
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Figure 6.1: Results from measurements of the OH (3-1) rotational tempera-
ture over Andøya for the two seasons 2011/2012 and 2012/2013.

The amplitude of ∼47 K peak to peak in the night between 7-8 February,
is very large compared to what is observed on the other nights and compared
to the observations mentioned in section 2.8, but the corresponding large
intensity variation gives a value for the relative change between the intensity
and temperature about the same as for the other nights, which is in the order
∼4-5.

The time series plots show that the (4-2) band experiences the same
dynamics as the (3-1), in good agreement with the two layers beeing close
in altitude. The intensity variation of the two bands are almost identical,
although their relative difference varies during the night. The fitted inte-
grated intensities of the P-branches also match the raw integrated Q-branch
intensities. The temperature series show for all three nights good agreement
between the (3-1) and (4-2) rotational temperaure, but they are not so easy
to compare on the smaller variations because the errors are higher for the
(4-2). This is the effect of the (4-2) P-branch beeing affected by the lower
instrument sensitivity. Therefore, the (3-1) temperature is a better source
for future detailed analyses, but the (4-2) serves as a good backup for the
observations.

The wavepower results is a very rough estimate, and is not discussed
further here. It is stated here as a reference for future calculations and
observations.
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6.2 The analysis scheme

The Na-OH ratio used to filter out data that are probably affected by clouds
is very debatable. The parameter value of 1.5 used to obtain the data in
the results presented here, is decided from general experience and not from
a systematic analysis. Some usable data is probably filtered out and some
data affected by clouds is likely to have been included. The intenisty of the
(3-1) P-branch is plotted against Na-intensity in figure 6.2 for a data set
without cloud filter. As can be seen, there is no clear relation between the
Na-intensity and the effect on the (3-1) band except from the higher inten-
sities clearly dropping off when the Na-intensity increases. The reason why
the intensities are distributed along the very steep, distinct line is because
the Na-lines sits in the middle of an OH R-branch. Therefore, counts in this
region increases linearly with increasing OH intensity. For the dataset used
in the results section, the (3-1) intensity is plotted vs. the Na-OH ratio in
figure 6.3. Again, it is not obvious on which value of the Na-OH ratio to
start excluding data. A plot of nocturnal temperatures obtained from the
dataset with no cloud filter and a temperature error limit of 7.5% is shown
in figure 6.4. The Na-intensity is not a perfect way of filtering out unreliable
spectrums, but by comparing this plot with the one in the results section, one
sees that most of the obvious outliers have effectively been filtered out while
most of the other data is unchanged. Clouds are by far the most disturb-
ing phenomena for the measurements, and the Na-filter therefore effectively
excludes most of the bad spectrums. The remaining obvious outliers, which
stand out with very high difference between the (3-1) and (4-2) temperature,
are the dates 3, 5 and 26 February. Common for these nights is that the raw
integrated (4-2) Q-branch intensities lie above the (3-2), indicating absorp-
tion of the (3-1) by water. Intensity plots of these nights are shown in figure
B.4.

As both the temperature and the intensity shows large variations over
the course of a night, it is obvoius that when data is excluded, the calculated
averages can change sharply from night to night and explain some of the
large day to day variation.

The error limit on the temperature, which was set to 5%, was decided
from a point of view that typical errors lie within the range 3-4 K and three
times these values gives errors from 9-12 K. The additional limit of 10 K was
set on the temperature because higher temperatures are often associated
with higher intensities, leading to better signal to noise ratios. By setting
this additional absolute limite, the limits on the relative error is gradually
increased as the temperature goes beyond 200 K. As described in section
4.6, there are situations where Gauss-Newton fit is not reliable, and the er-
ror estimate from the covariance matrix and the residuals obviously do not
not give a sensible picture of the actual error. This is why the temperatures
calculated with the algorithm 3 February, which reached ∼260 K and with
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Figure 6.2: OH (3-1) P-branch intensity as a function of Na intensity (cloud
indicator).

error estimates of around 6 K, were not covered by the analysis scheme. Fig-
ure 5.5 shows that above ∼ 4%, the errors are spread more evenly on the
intensities and that there is not much data above 5%. The lower limit on
valid intensities was set to 100 counts/sec. Figure 6.2 and 6.3 shows that
intensities below this value is unlikely when spectrums with high Na-level
are exluded.

An issue which was described in section 4.6, was that the peaks were
found to change position from night to night on the detector, most likely be-
cause the temperature of the instrument surroundings changes. This means
that when the peaks are found from the average spectrum for each night,
they might be systematically wrong for periods of the night. Perhaps could
this be solved by making the algorithm more dynamic by updating the peak
positions during the night. Ideally, the surroundings temperature should
have been constant. Wether or not it is an option or if it at all makes sense
to for instance insulate the instrument chimney is a relevant discussion in
the future of these measurements.

The analysis scheme is developed to deal with more or less constant base-
lines for reasons that were explained in section 4.2. If the baseline changes
significantly during the night because of increase in scattered blackbody radi-
ation, for instance by moonlight, the potential errors are large (section 4.6.2).
The method of subtracting the offset from the spectrums described in section
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Figure 6.3: Intensity of the (3-1) P-branch vs. the Na-OH ratio.
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Figure 6.4: Nightly averaged temperatures obtained from a dataset with no
cloud filter. Compared to figure 5.1, more outliers are produced.
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4.2 is only based on the no-signal points from the instrument function and
the assumption that the underlying atmospheric profile changes slowly over
the band. A more general way of dealing with the offset, would be to obtain
an estimate of the actual underlying background profile. A way to do this
could be to scan the atmosphere with the spectrometer just after the sunset
or before sunrise, when the spectrum is nearly OH free. Perhaps could this
make the model more adaptable to changes in the baseline, which would
make it possible to get usable fits closer to sunrise/sunset and to account for
changes in the background of scattered blackbody radiation.
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Chapter 7

Conclusion

Ground based measurements of the hydroxyl airglow over Trondheim (63.4◦

N, 10.4◦ E) in the ∼1450-1650 nm region started 20th November 2012. Mea-
surements for the season 2012/2013 successfully completed on 27. April and
a complete analysis scheme has been developed to derive the rotational tem-
peratures of the (3-1) and (4-2) transitions from the recorded spectrums.
The method is based on fitting a synthetic model based on a measurement
of the instrument lineshape, using a non linear least squares fitting routine.

The analysis scheme has been used to analyse data for the whole mea-
surement period. Comparisons to model and theory, show that the nightly
averaged temperatures follow the expected climatological pattern of warm
winter temperatures and cooling towards summer. The most profound ex-
ception from the model, are the high January temperatures of ∼230 K, but
the same high temperatures is also observed at Andøya (69◦N). On a general
basis, the (3-1) and (4-2) temperatures have approximately the same values.
The average difference of 1.5 K colder (4-2) temperatures agrees well with
model predictions of the v = 4 vibrational state intensity distribution beeing
higher in altitude and therefore colder.

Temperature and intensity series from three nights have been analysed,
revealing large fluctuations in the hydroxyl layer. A very large peak to
peak temperature variation of ∼47 K was observed on 7-8 February, but
the magnitude of the corresponding intensity variation is consistent with the
observations from the two other nights, with relative changes in the intensity
∼4-5 times larger than in the temperature. The high degree of covariation
of the (3-1) and (4-2) variations is in good agreement with the two layers
beeing close in altitude and should experience the same dynamics.

The relative error in the derived (3-1) temperature is for the vast majority
of the individual measurements in the range 1-2%, this is a good result
compared to the maximum precision found to be ∼1%. The results are not
so good for the (4-2), because the P-branch is affected by a lower instrument
sensitivity.
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Although the results indicate that the algorithm produces realistic re-
sults and to a good precisicon, this work also reveals that there are some
unresolved issues. These are related to the removal of the baseline, which
the derived temperature seem to be very sensitive to. It is suggested that the
baseline is removed with an estimate of the actual atmospheric background
profile. This will probably make the model more adaptive to changes caused
for instance by moonglight. It is also pointed out that the wavelength scale of
the instrument is changing, most likely caused by the varying temperature in
the instrument’s surroundings. The effect on the derived temperatures, and
if there are possible solutions, should be investigated in the future of these
measurements. With these issues solved, the algorithm has the potenial of
beeing a very robust method to remote sense mesospheric temperatures.
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Appendix A

Tables

Table A.1: Atmospheric transimission coefficients for the OH (3,1) P-branch
lines

Line High Latitude High Latitude
Winter Summer

P1(2) 0.995 0.977
P1(3) 0.992 0.976
P1(4) 0.994 0.978
P1(5) 0.996 0.980
P2(2) 0.994 0.959
P2(3) 0.970 0.819
P2(4) 0.994 0.978
P2(5) 0.995 0.978

Table A.2: Atmospheric transimission coefficients for the OH (4,2) P-branch
lines

Line High Latitude High Latitude
Winter Summer

P1(2) 0.985 0.970
P1(3) 0.992 0.974
P1(4) 0.996 0.979
P1(5) 0.993 0.972
P2(2) 0.985 0.936
P2(3) 0.990 0.976
P2(4) 0.995 0.979
P2(5) 0.996 0.979
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Appendix B

Plots
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Figure B.1: Straight line fits of the OH (3,1) and (4,2) temperatures from
1. Jan - 27. April 2013. The fits yield a decline of 0.38 K/day for the (3,1)
temperature and 0.35 for the (4,2) temperature.
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Figure B.2: Relative error in the (3,1) Temperature as a function of intensity.
Same plot as figure 5.5 but with data from nights between 6-7. and 7-
8. December 2012 exluded where the instrument was run with 15 seconds
integration time. The cluster which was commented in section 5.2 is gone.
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(a) Unfiltered spectrum with hot pixels.
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(b) 3 point median filered spectrum. Hot pixels removed

82



0 1 2 3 4 5 6 7 8 9 10
x 104

70

80

90

100

110

120

130

Volume Emission Rate (photons cm−3 s−1 sphere−1)

Al
tit

ud
e 

(k
m

)

 

 

I9
I8
I7
I6
I5
I4
I3
I2
I1

Figure B.3: The altitude distribution of the different vibrational states of
the OH∗ molecule calculated with a photochemical equilibrium model.
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Figure B.4: Intensity plots of the nights causing the outliers in the nightly
averaged temperature series. Common for these nights are that the (4-2) Q-
branch intensity is higher than than for the (3-1), indicating water absorption
of the OH signal. Probably because instrument window was covered with
water, snow or ice. 84



Appendix C

Code

C.1 Main routine: calc_ohdata

import ohtools
from datetime import datetime
import numpy
import math
import warnings

warnings.filterwarnings(’ignore’)

def calc_ohdata(year, day):

#importing signal:
signal_raw = ohtools.import_day(year, day)

try:
if signal_raw == 0:

return 0
except ValueError:

pass

NA_LIMIT = 1.5

filename_31 = ohtools.mkfilename(signal_raw)
resp_kr = numpy.loadtxt(’ohtools/response_kr.dat’)
numofsig = signal_raw.shape[0]
avgspec = ohtools.avgspec_nafilt(signal_raw, 25, numofsig-25, NA_LIMIT

)
avgspec_kr = avgspec/resp_kr

peaks = ohtools.locate_peaks(avgspec_kr)

borders = ohtools.band_borders(peaks)
oh31pts = numpy.arange(borders[0], borders[1])
oh42pts = numpy.arange(borders[2], borders[3])
w_31, w_42 = ohtools.instrfunc_kr(peaks, borders)
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#Indices on which to start and stop
START = 0
STOP = numofsig
TG = 200

avg31band = avgspec[oh31pts]
avg42band = avgspec[oh42pts]

#Calculating baseshapes from average spectrums
basepts31, basepts42 = ohtools.basepts(peaks)
baseshape_31 = ohtools.basecurve(avgspec, basepts31, borders[0],

borders[1], 0)
baseshape_42 = ohtools.basecurve(avgspec, basepts42, borders[2],

borders[3], 0)
baseshape_31 -= numpy.min(baseshape_31)
baseshape_42 -= numpy.min(baseshape_42)
avg31band -= baseshape_31
avg42band -= baseshape_42

#Computing temperatures of avarage spectrum
mt31, mmi31, mie31, mit31, ms31, err31 = ohtools.get_temp_subbg(

avg31band, TG, w_31, 0, 0)
mt42, mmi42, mie42, mit42, ms42, err31 = ohtools.get_temp_subbg(

avg42band, TG, w_42, 1, 0)

sig_indices = numpy.arange(START,STOP)
numofres = len(sig_indices)

print(’Filtering signals...’)
signal_raw = ohtools.filtsig(signal_raw)
print(’Done’)

print(’Calculating temperatures:’)

filepath = ’/Users/endre/Dropbox/Dokumenter/NTNU/10.semester/oh data/
oh data/’ + filename_31

f = open(filepath, ’w’)

temps_31 = numpy.zeros(numofres)

k = 0
for i in sig_indices:

if(k > 4 and k%5 == 0):
TG_new = ohtools.mean(temps_31[k-5:k])
if(math.isnan(TG_new) != True):

TG = TG_new

current_sig = signal_raw[i,11:1035]
q31, q42 = ohtools.qbranch(current_sig)
na = ohtools.sodiumlev(current_sig)

try:
naohratio = na/q42
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except ZeroDivisionError:
naohratio = float(’nan’)

solspecrat = ohtools.solspecratio(current_sig)

current_band_31 = current_sig[oh31pts]-baseshape_31
current_band_42 = current_sig[oh42pts]-baseshape_42

time = ohtools.get_time(signal_raw[i,:])

if naohratio < NA_LIMIT:

if i < 25 or i > numofsig-25:

t31, et31, i31, ei31, it31, err31 = ohtools.get_temp_fitbg
(current_band_31, TG, w_31, 0, 0, baseshape_31)

t42, et42, i42, ei42, it42, err42 = ohtools.get_temp_fitbg
(current_band_42, TG, w_42, 1, 0, baseshape_42)

else:

t31, et31, i31, ei31, it31, err31 = ohtools.get_temp_subbg
(current_band_31, TG, w_31, 0, 0)

t42, et42, i42, ei42, it42, err42 = ohtools.get_temp_subbg
(current_band_42, TG, w_42, 1, 0)

else:
t31 = float(’nan’)
et31 = float(’nan’)
i31 = float(’nan’)
ei31 = float(’nan’)
it31 = 0
err31 = ’High Na-OH ratio’

t42 = float(’nan’)
et42 = float(’nan’)
i42 = float(’nan’)
ei42 = float(’nan’)
it42 = 0
err42 = ’’

temps_31[k] = t31

ohtools.write_scan_result(t31, et31, i31, ei31, t42, et42, i42,
ei42, q31, q42, na, time, f)

k += 1

f.close()

print(’Iterations complete.’)
a = ohtools.get_ohstats(filepath, 1)
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print(’Filename: {}’.format(filename_31))
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C.2 get_temp_subbg

def get_temp_subbg(spectrum, tguess, w, bandflag, infoflag):

err_message_gn = ’’ #Error message from Gauss-Newton iteration
err_message = ’’

speclen = spectrum.size
betaguess = 1.0
uncrt = numpy.zeros((4,2))

#Deciding model function from the bandflag
if(bandflag == 0):

shift = 0
plot_title = ’OH (3,1) band’
partfunc = partfunc_31
delpartfunc = delpartfunc_31

elif(bandflag == 1):
shift = 6
plot_title = ’OH (4,2) band’
partfunc = partfunc_42
delpartfunc = delpartfunc_42

start = time.clock()
tauguess = 1/tguess
qr = partfunc(tauguess)
wmod = expwmat(w, tauguess, shift)/qr #Divide by partition function
specshape = ohmodel(1, wmod)

#Scaling the band to match the measured spectrum:
rho_initial = numpy.max(spectrum - betaguess)/numpy.max(specshape)

ohband = rho_initial*specshape
model = ohband + betaguess
intens_initial = numpy.sum(model)

residuals = numpy.zeros(speclen)
for i in range(speclen):

residuals[i] = spectrum[i] - model[i]

sse_initial = 0 #Initial sum of square erros
for i in residuals:

sse_initial += i**2

ds = 1e6
itcount = 0

sse = sse_initial
params = numpy.array([rho_initial, tauguess, betaguess])

#Gauss-Newton algorithm
while(ds > ACCLIM and itcount < ITMAX):

89



jacobi = numpy.zeros((speclen,3)) #Jacobi matrix
jacobi[:,0] = specshape
jacobi[:,1] = params[0]*jacobitau(wmod, params[1], qr, shift)
jacobi[:,2] = 1

#jacobi[:,1] *= params[0] #Multiplying with rho

jtj = jacobi.T.dot(jacobi) #Calculating (J^T*J)

try:
#Calculating (J^T*J)^-1*J^Tr:
invjtjjtr = numpy.linalg.solve(jtj,jacobi.T.dot(residuals))

except numpy.linalg.LinAlgError:
err_message_gn = ’Normal eqn. failure’
break

params[0] += invjtjjtr[0] #Adding changes
params[1] += invjtjjtr[1]
params[2] += invjtjjtr[2]

qr = partfunc(params[1])
wmod = expwmat(w, params[1], shift)/qr #New model with the

adjusted parameters
specshape = ohmodel(1, wmod)
ohband = params[0]*specshape
model = ohband + params[2]

oldsse = sse
residuals = numpy.zeros(speclen)
for i in range(speclen):

residuals[i] = spectrum[i] - model[i]

sse = 0
for i in residuals:

sse += i**2

ds = abs(oldsse - sse) #Change in sum of square errors
itcount += 1

elapsed = time.clock()-start
if(len(err_message_gn) == 0):
#If err_message_gn != 0 Gauss-Newton algortim succeeded. Check values

and calculate
#uncertainties

newt = 1/params[1] #New temperature
intens_mod = numpy.sum(ohband)
intens_real = numpy.sum(spectrum-params[2])

#Calculating errors:
uncrt, errmess_cov = uncertainties_subbg(jtj, residuals, params,

intens_real, speclen)

intens_mod_err = intens_mod*uncrt[1,1]/100
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#Checking result:
if(newt < templim_low or newt > templim_upper): #Temperature

limits
newt = float(’nan’)
uncrt[0,1] = float(’nan’)
uncrt[0,0] = float(’nan’)
intens_mod_err = float(’nan’)
err_message += ’Not valid temp, ’

if(intens_mod < intenslim_low or intens_mod > intenslim_upper): #
Intensity limits
intens_real = float(’nan’)
intens_mod = float(’nan’)
intens_mod_err = float(’nan’)
uncrt[2,:] = float(’nan’)
uncrt[1,:] = float(’nan’)
err_message += ’Not valid intensity, ’

#Checking errors:
if(uncrt[0,0] > temperr_lim or uncrt[0,1] > rel_temperr_lim): #

Temperature error (set to 25 K)
uncrt[0,:] = float(’nan’)
newt = float(’nan’)
err_message += ’High T error, ’

if(intens_mod_err > intenserr_lim or uncrt[1,1] >
rel_intenserr_lim): #Intensity error
intens_real = float(’nan’)
intens_mod = float(’nan’)
intens_mod_err = float(’nan’)
err_message += ’High I error’

else:
newt = float(’nan’)
intens_real = float(’nan’)
intens_mod = float(’nan’)
uncrt[:,:] = float(’nan’)
intens_mod_err = float(’nan’)
err_message = err_message_gn #Setting error message from Gauss-

Newton calculation

if(infoflag == 1):
print(’-------------------Before iteration-------------------’)
print(’Initial temperature: {:4.2f}’.format(tguess))
print(’Initial intensity: {:6.2f}’.format(intens_initial))
print(’Initial rho: {:6e}’.format(rho_initial))
print(’Initial beta: {:3f}’.format(betaguess))
print(’Initial SSE: {:6.2f}’.format(sse_initial))
print(’--------------------After iteration-------------------’)
print(’New temperature: {:4.2f} Âś {:3.2f}, acc: {:4.2f}%’.format(

newt, \
uncrt[0,0], uncrt[0,1]))

print(’Real intensity: {:5.2f} Âś {:3.2f}, acc: {:2.2f}%’.format(
intens_real, \
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uncrt[2,0], uncrt[2,1]))
print(’Model intensity: {:5.2f} Âś {:.2f}, acc: {:2.2f}%’.format(

intens_mod, \
intens_mod_err, uncrt[1,1]))

print(’New rho: {:.3e} Âś {:.3e}, acc: {:2.2f} %’.format(
params[0], uncrt[1,0], uncrt[1,1]))

print(’New beta: {:9.3f} Âś {:6.3f} acc: {:2.2f} %’.format(params
[2], uncrt[3,0], uncrt[3,1]))

print(’SSE: {:6.2f}’.format(sse))
print(’Number of iterations: {:2d}’.format(itcount))
print(’CPU time: {:2.6f}’.format(elapsed))
print(’Error: {}’.format(err_message))

offset = numpy.zeros(speclen)
offset[:] = params[2]

fig1 = pyplot.figure(figsize=(4.5,3.5))
ax = fig1.add_subplot(111)
ax.plot(spectrum,’b’, label = ’Real’)
ax.plot(model,’r’, label = ’Model’)
pyplot.ylabel(’Intensity [counts/sec]’)
pyplot.xlabel(’Pixel number’)
pyplot.title(plot_title)
pyplot.legend()
boxtext = ’Temperature: {:3.1f} Âś {:3.1f} K \n’.format(newt,

uncrt[0,0])
boxtext += ’Intensity: {:4.1f} Âś {:4.1f} counts/sec’.format(

intens_real, uncrt[2,0])
props = dict(boxstyle=’round’, facecolor=’wheat’, alpha=0.5)
ax.text(0.03, 0.97, boxtext, transform=ax.transAxes,

verticalalignment=’top’, bbox=props)

fig2 = pyplot.figure(figsize=(4.5,3.5))
pyplot.plot(spectrum-model, ’k’)
pyplot.xlabel(’Pixel number’)
pyplot.ylabel(’Data - Model [counts/sec]’)
pyplot.show()

return newt, uncrt[0,0], intens_mod, intens_mod_err, itcount,
err_message
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