Part 2: Background Theory




‘ Buoyancy oscillations ‘
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Parcel oscillates in the vertical with the buoyancy frequency N. 10



‘ Internal gravity waves ‘

Now consider the parcel of air displaced
upward along a sloping surface:

Acceleration of parcel up the slope is
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Component of buoyancy force along
the slope is
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which is the dispersion relation for a hydrostatic

gravity wave in the Boussinesq approximation. 1



Linear gravity wave equations

Equations governing hydrostatic gravity waves without rotation are:
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Resulting dispersion relation is:
Consider plane wave solutions: N2p2
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Nonhydrostatic and rotational effects

* the previous example was for linear hydrostatic GWs
without the effects of the Earth’s rotation.

* a more general dispersion relation which accounts
for nonhydrostatic and rotational effects is:
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where f is the Coriolis parameter.

e a vertically propagating wave (m real) now requires that

Il <ol <N
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Vertically trapped mountain waves

* For a stationary
mountain wave with

@] >> |f]
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* Dispersion relation
becomes

VIETNAM - P | « Short horizontal
; wavelengths (k > N/U)
are vertically trapped.

Satellite image of vertically trapped mountain waves (courtesy of Sam Shen, U of Alta)
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Momentum flux

» vertically propagating gravity \
waves “transport” momentum
over large height ranges.
« consider the continuity equation 7 X
for the hydrostatic gravity in the
case where m << 2H.
ou’ Ouw w’ (for @ < 0)
o "9z "
— g _F. + GWs with eastward (westward)
m intrinsic frequencies have positive
1 @ negative) momentum flux.
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Momentum flux deposition

e gravity waves interact with the mean flow through
the deposition of momentum:

ou 1 9

ow = % o) [
5 + ... o Bz(p uw ) GWD

« for a steady, linear & undamped GW, the momentum
flux is independent of height = GWD = 0.

« GWD arises when the momentum flux changes with
height, which will occur if:

1. the GW approaches a critical level (c = U)

2. the GW ‘breaks’ and undergoes turbulent dissipation.
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Cartoon depicting critical level ‘filtering’ and
nonlinear breakdown of a monochromatic GW
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Mesoscale model simulations of
convectively generated GWs

» to simulate small-scale GWs generated by convection a
2D or 3D mesoscale model must be used.

« compared to a GCM a mesoscale model employs a very
fine horizontal resolution (1km) and a short timestep (5 s).

* here we will examine results from a 3D simulation of a
tropical squall line.

» the model equations are nonlinear, compressible,
nonhydrostatic and nonrotating; cloud microphysics
parameterization is used.
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‘ 3D mesoscale model results‘
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Eastward propagating
GWs filtered out by
eastward QBO winds
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Satellite observations of convectively generated
small-scale gravity waves
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