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PREFACE 

The fast Fourier transform (FFT) is a widely used signal-processing and 
analysis concept. Availability of special-purpose hardware in both the com
mercial and military sectors has led to sophisticated signal-processing sys
tems based on the features of the FFT. The implementation of FFT algo
rithms on large mainframe computers has made unprecedented solution 
techniques readily achievable. Personal computers have generated yet a fur
ther proliferation of FFT applications. To the student, the professional at 
home, engineers, computer scientists, and research analysts, the FFT has 
become an invaluable problem-solving tool. 

Popularity of the FFT is evidenced by the wide variety of application 
areas. In addition to conventional radar, communications, sonar, and speech 
signal-processing applications, current fields of FFT usage include biomed
ical engineering, imaging, analysis of stock market data, spectroscopy, 
metallurgical analysis, nonlinear systems analysis, mechanical analysis, 
geophysical analysis, simulation, music synthesis, and the determination 
of weight variation in the production of paper from pulp. Clearly, an appli
cations text cannot address in depth such a breadth of technology. The 
objective of this book is to provide the foundation from which one can ac
quire the fundamental knowledge to apply the FFT to problems of interest. 

The book is designed to be user friendly. We stress a pictorial, intuitive 
approach supported by mathematics, rather than an elegant exposition that 
is difficult to read. Every major concept is developed by a three-stage se
quential process. First, the concept is introduced by an intuitive graphical 
development. Second, a nonsophisticated (but theoretically sound) mathe-

xiii 



xlv Preface 

matical treatment is developed to support the intuitive arguments. The third 
stage consists of practical examples designed to review and expand the con
cept. This three-step procedure, with an emphasis on graphical techniques, 
gives meaning as well as mathematical substance to the basic properties and 
applications of the FFT. Readers should expect a high efficiency in trans
ferring the development of the text into practical applications. 

This book is a sequel to The Fast Fourier Transform. The focus of the 
original volume was on the Fourier transform, the discrete Fourier trans
form, and the FFT. Only a cursory examination of FFT applications was 
presented. This text extends the original volume with the incorporation of 
extensive developments of fundamental FFT applications. Applications of 
the FFT are based on its unique property to rapidly compute the Fourier, 
inverse Fourier, or Laplace transforms. For this reason, we develop in detail 
the methods for applying the FFT to transform analysis and interpreting 
results. We then extend the development and apply the FFT to the com
putation of convolution and correlation integrals. All developments employ 
a rich use of graphical techniques and examples to insure clarity of the 
presentation. We then build on these fundamentals and expand the basic 
FFT uses to a higher level of application topics. Topical areas include two
dimensional FFT analysis, FFT digital filter design, FFT multichannel band
pass filtering, FFT signal processing, and FFT systems applications. 

The text should provide an excellent basis for a senior level or intro
ductory graduate course on digital signal processing. Course outlines em
phasizing a thorough examination of the Fourier Transform will find the text 
particularly appealing. The added applications material allows students to 
develop the experience necessary to apply the FFT to problems spanning a 
wide variety of disciplines. Students are expected to have access to a digital 
computer. The text should serve equally well as a supplementary text for a 
course with broad systems analysis and signal-processing objectives. The 
book should also be very attractive as a reference to the practicing signal
processing community because it offers not only a readable introduction to 
the FFT, but a thorough and unified reference for applying the FFT to any 
field of interest. Readers should also find that the material provides an ex
cellent self-study text. 

The text is divided into five major subject areas: 

1. The Fourier Transform. In Chapters 2 through 6, we lay the foun
dation for the entire book. We investigate the Fourier transform, its inversion 
formula, and its basic properties; graphical explanation of each discussion 
lends physical insight to the concept. The transform properties of the con
volution and correlation integrals are explored in detail. Numerous examples 
are presented to facilitate understanding. For reference in later chapters, 
Fourier series and waveform sampling of baseband signals are developed in 
terms of Fourier transform theory. 
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2. The Discrete Fourier Transform. Chapters 6 and 7 develop the dis
crete Fourier transform. A graphical presentation develops the discrete 
transform from the continuous Fourier transform. This graphical presen
tation is substantiated by a theoretical development. Discrete transform 
properties are derived. The relationship between the discrete and continuous 
Fourier transform is explored in detail; numerous waveform classes are con
sidered by illustrative examples. Discrete convolution and correlation are 
defined and compared with continuous equivalents by illustrative examples. 

3. The Fast Fourier Transform. In Chapter 8, we develop the FFT 
algorithm. A simplified explanation of why the FFT is efficient is presented. 
We follow with the development of a signal flow graph, a graphical procedure 
for examining the FFT. Based on this flow graph, we describe sufficient 
generalities to develop a computer flowchart and computer programs. Theo
retical developments of the various forms of the FFT are presented. 

4. Basic Applications of the FFT. Chapters 9 through 11 focus on an 
investigation of the basic applications of the FFT. Application of the FFT 
to the computation of discrete and inverse discrete Fourier transforms is 
presented with emphasis on a graphical examination of resolution and com
mon FFT user mistakes (aliasing, time-domain truncation, noncausal time 
functions, and periodic functions). FFT data-weighting functions are ex
amined in depth. Laplace transform computation using the FFT is presented 
with graphical examples. FFT implementation of discrete convolution and 
correlation is developed by extensive graphical presentations. Computa
tional procedures are carefully defined and a computer program is provided. 
Two-dimensional Fourier transforms, convolution, and correlation are de
veloped (graphically and by example), as in the one-dimensional case. Ap
plication of the FFT to two-dimensional Fourier transform and convolution 
computation are described and computer programs are provided. 

S. Signal Processing and System FFT Applications. The design and 
application of digital filters using the FFT is explored from a practical usage 
perspective. A novel application of the FFT to multichannel band-pass fil
tering is developed in a manner from which the reader can readily expand 
the results. 

Because waveform sampling is fundamental to FFT signal-processing 
applications, band-pass and quadrature waveform sampling is addressed in 
detail. The philosophy underlying the remaining discussions is to address a 
range of FFT techniques that are applicable to sonar, seismic, radar, com
munications, medical, optical, system analysis, and antenna applications. 
Specific FFT application areas addressed include signal-to-noise enhance
ment, matched filtering, deconvolution filtering, time-difference-of-arrival 
measurements, phase interferometry measurements, antenna analysis, sys
tem simulation, power spectrum analysis, and array beamforming. 
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INTRODUCTION 

The fast Fourier transform (FFT) is a fundamental problem-solving tool in 
the educational, industrial, and military sectors. Since 1965 [1], FFT usage 
has rapidly expanded and personal computers fuel an explosion of additional 
FFT applications. The single focus of this book is the FFT and its applications. 

In this chapter, we survey briefly the broad application areas of the 
FFT to give the reader a perspective for its seemingly universal appeal. We 
will establish the FFT as one of the major developments in signal-processing 
technology. The diverse applications of the FFT follow from the roots of 
the FFT: the discrete Fourier transform and hence the Fourier transform. 
Our overview of the Fourier transform and its interpretation with respect 
to the time and frequency domains is presented. 

1.1 THE UBIQUITOUS FFT 

Ubiquitous is defined as being everywhere at the same time. The FFT is 
certainly ubiquitous because of the great variety of apparent unrelated fields 
of application. However, we know that the proliferation of applications 
across broad and diverse areas is because they are united by a common 
entity, the Fourier transform. For years only the elitist theoretical mathe
matician was capable of staying abreast of such a broad spectrum of tech
nologies. However, with the FFT, Fourier analysis has been reduced to a 
readily available and practical procedure that can be applied effectively with-
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Applied Mechanics 

• structural dynamics 
• aircraft wing-flutter 

suppression 
• machinery dynamics 

diagnostics 
• nuclear power plant 

modeling 
• vibration analysis 

Sonics and Acoustics 

• acoustic imaging 
• passive sonar 
• ultrasonic transducers 
• array processing 
• architecture acoustic 

measurement 
• music synthesis 

Biomedical Engineering 

• diagnosis of airways 
obstruction 

• muscle fatigue monitoring 
• assessing heart valve 

damage 
• tissue structure 

characterization 
• gastric disturbances 

investigation 
• cardiac patients diagnosis 
• EeG data compression 
• artery dynamics 

investigation 

Numerical Methods 

• high-speed interpolation 
• conjugate gradient method 
• boundary value problems 
• Riccati and Dirichlet 

equations 
• Rayleigh's integral 

Introduction Chap. 1 

• Wiener-Hopf integral 
equation 

• diffusion equation 
• numerical integration 
• Karhunen-Loeve transform 
• elliptic differential 

equations 

Signal Processing 

• matched filters 
• deconvolution 
• real-time spectral analysis 
• cepstrum analysis 
• coherence function 

estimation 
• speech synthesis and 

recognition 
• random process generation 
• transfer function 

estimation 
• echo/reverbation removal 

Instrumentation 

• chromatography 
• microscopy 
• spectroscopy 
• x-ray diffraction 
• electrochronography 

Radar 

• cross-section measurement 
• moving target indicator 
• synthetic aperture 
• doppler processor 
• pulse compression 
• clutter rejection 

Electromagnetics 

• micros trip line propagation 
• conducting bodies 

scattering 

Figure 1.1 Summary of FFT Applications. 
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• antenna radiation patterns 
• dielectric substrate 

capacitance 
• phased-array antenna 

analysis 
• time-domain reflectometry 
• waveguide analysis 
• network analysis 

Communications 

• systems analysis 
• transmultiplexers 
• demodulators 
• speech scrambler system 
• multichannel filtering 
• M -ary signaling 

• signal detection 
• high-speed digital filters 
• voice coding systems 
• video bandwidth 

compression 

Miscellaneous 

• magnetotellurics 
• metallurgy 
• electrical power systems 
• image restoration 
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• nonlinear system analysis 
• geophysics 
• GaAs FET transient 

response 
• integrated circuit modeling 
• quality control 

Figure 1.1 (cont.) 

out sophisticated training or years of experience. The FFT has become a 
standard analysis module because of its usefulness and availability. 

The FFT is no longer a textbook novelty. In Fig. 1.1, we show an 
abbreviated listing of typical application areas of the FFT. Key reference 
materials in the FFT application fields shown are included in the bibliog
raphy. The FFT, once the province of engineers and scientists, has become 
a technique used in areas ranging from the analysis of stock market trends 
to the determination of weight variations in the production of paper from 
pUlp. Computer technology evolution, particularly that of the personal com
puter, has positioned the FFT as a handy and powerful analysis tool whose 
availability is no longer limited only to the signal-processing specialist. As 
shown in Fig. 1.1, the application fields of the FFT are extremely diverse. 
In an age where it is virtually impossible to stay abreast of technology, it is 
stimulating to find an analysis concept that enables one to approach an un
familiar field with familiar tools. Certainly, the FFT has become one of the 
major developments in digital signal-processing technology. 

As stated previously, the common bond throughout the varied appli
cation of the FFT is the Fourier transform. A key property of the Fourier 
transform is its ability to allow one to examine a function or waveform from 
the perspective of both the time and frequency domains. The Fourier trans
form is the cornerstone of this text. 
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1.2 INTERPRETING THE FOURIER TRANSFORM 

A simplified interpretation of the Fourier transform is illustrated in Fig. 1.2. 
As shown, the essence of the Fourier transform of a waveform is to decom
pose or separate the waveform into a sum of sinusoids of different frequen
cies. If these sinusoids sum to the original waveform, then we have deter
mined the Fourier transform of the waveform. The pictorial representation 
of the Fourier transform is a diagram that displays the amplitude and fre
quency of each of the determined sinusoids. 

Figure 1.2 also illustrates an example of the Fourier transform of a 
simple waveform. The Fourier transform is the two sinusoids that add to 
yield the waveform. As shown, the Fourier transform diagram displays both 
the amplitude and frequency of each sinusoid. We have followed the usual 
convention and displayed both positive and negative frequency sinusoids 
for each frequency; the amplitude has been halved accordingly. The Fourier 
transform then decomposes the example waveform into its two individual 
sinusoidal components. 

The Fourier transform identifies or distinguishes the different fre
quency sinusoids (and their respective amplitudes) that combine to form an 
arbitrary waveform. Mathematically, this relationship is stated as 

S(f) = I: ex> s(t)e - j2-rrft dt (1.1) 

where s(t) is the waveform to be decomposed into a sum of sinusoids, S(f) 
is the Fourier transform of s(t), andj = '\!'-=t. An example of the Fourier 
transform of a square-wave function is illustrated in Fig. 1.3(a). An intuitive 
justification that a square waveform can be decomposed into the set of sin
usoids determined by the Fourier transform is shown in Fig. 1.3(b). 

We normally associate the analysis of periodic functions such as a 
square wave with Fourier series rather than Fourier transforms. However, 
as we will show in Chapter 5, the Fourier series is a special case of the 
Fourier transform. 

If the waveform s(t) is not periodic, then the Fourier transform will 
be a continuous function of frequency, that is, s(t) is represented by the 
summation of sinusoids of all frequencies. For illustration, consider the pulse 
waveform and its Fourier transform, as shown in Fig. 1.4. In this example, 
the Fourier transform indicates that one sinusoid frequency becomes indis
tinguishable from the next and, as a result, all frequencies must be 
considered. 

The Fourier transform is then a frequency-domain representation of a 
function. As illustrated in both Figs. 1.3(a) and 1.4, the Fourier transform 
frequency domain contains exactly the same information as that of the orig-
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Chap. 1 

.. 

inal function; they differ only in the manner of presentation. Fourier analysis 
allows one to examine a function from another point of view, the transform 
domain. As we will see in the discussions to follow, the method of Fourier 
transform analysis employed, as illustrated in Fig. 1.2, is often the key to 
problem-solving success. 
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Figure 1.4 Fourier transform of a pulse waveform. 

1.3 DIGITAL FOURIER ANALYSIS 

Because of the wide range of problems that are susceptible to attack by the 
Fourier transform, we would expect the logical extension of Fourier trans
form analysis to the digital computer. Numerical integration of Eq. (1.1) 
implies the relationship: 

N-\ 

S(h) = L s(ti)e-j2-rrfkl'(ti+ \ - ti) k = 0, 1, ... , N - 1 (1.2) 
i=O 

For those problems that do not yield to a closed-form Fourier transform 
solution, the discrete Fourier transform of Eq. 0.2) offers a potential method 
of attack. However, careful inspection of Eq. 0.2) reveals that if there are 
N data points of the function S(ti) and if we desire to determine the amplitude 
of N separate sinusoids, then computation time is proportional to N 2 , the 
number of multiplications. Even with high-speed computers, computation 
of the discrete Fourier transform requires excessive machine time for large 
N. 

An obvious requirement existed for the development of techniques to 
reduce the computing time of the discrete Fourier transform; however, the 
scientific community met with little success. Then, in 1965, Cooley and 
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Tukey published their mathematical algorithm [1], which has become known 
as the "fast Fourier transform. " The fast Fourier transform (FFT) is a com
putational algorithm that reduces the computing time of Eq. (1.2) to a time 
proportional to N log2 N. This increase in computing speed has completely 
revolutionized many facets of scientific analysis. A historical review of the 
discovery of the FFT illustrates that this important development was almost 
ignored [4, 5]. 

The FFT has revolutionized the use of the discrete Fourier transform. 
It is important to recognize that one's ability to apply the FFT relies prin
cipally on an understanding of the discrete Fourier transform and not the 
FFT algorithm. For this reason, this text emphasizes the fundamentals of 
the Fourier and discrete Fourier transforms. 

REFERENCES 
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THE FOURIER TRANSFORM 

A principal analysis tool in many oftoday's scientific challenges is the Four
ier transform. Possibly the most well-known application of this mathematical 
technique is the analysis oflinear time-invariant systems. But, as emphasized 
in Chapter 1, the Fourier transform is essentially a universal problem-solving 
technique. Its importance is based on the fundamental property that one can 
examine a particular relationship from an entirely different viewpoint. Si
multaneous visualization of a function and its Fourier transform is often the 
key to successful problem solving. 

2.1 THE FOURIER INTEGRAL 

The Fourier integral is defined by the expression 

H(f) = J:", h(t)e -j2Trft dt (2.1) 

If the integral exists for every value of the parameter f, then Eq. (2.1) defines 
H(f), the Fourier transform of h(t). Typically, h(t) is termed a function of 
the variable time and H(f) is termed a function of the variable frequency. 
We use this terminology throughout the book: t is time and f is frequency. 
Further, a lowercase symbol represents a function of time; the Fourier trans
form of this time function is represented by the same uppercase symbol as 
a function of frequency. 

9 
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In general, the Fourier transform is a complex quantity: 

H(f) = R(f) + j J(f) = I H(f) I ej8(f) (2.2) 

where R(f) is the real part of the Fourier transform, 
J(f) is the imaginary part of the Fourier transform, 
I H(f) is the amplitude or Fourier spectrum of h(t) and is given by 

R2(f) + J2(f) , 
8(f) is the phase angle of the Fourier transform and is given by 
tan- 1 [J(f)/R(f)]. 

Example 2.1 Exponential Waveform 

To illustrate the various defining terms of the Fourier transform, consider the func
tion of time 

From Eq. (2.1), 

Hence, 

h(t) = l3e -at 

= 0 

t>O 

t<O 

l3a 
R(f) = a 2 + (2'TrN 

-2'Trfl3 
I(f) = a 2 + (2'Trff 

[ -2'TrfJ 8(f) = tan - I -a-

(2.3) 

(2.4) 

Each of these functions is plotted in Fig. 2.1 to illustrate the various forms of FOUl;er 
transform presentation. 
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hit) 

(3 

(a) (b) (e) 

Figure 2.1 (a) Example of a time-domain function, (b) real and imaginary pre
sentations of the Fourier transform, and (c) magnitude and phase presentations 
of the Fourier transform. 

2.2 THE INVERSE FOURIER TRANSFORM 

The inverse Fourier transform is defined as 

11 

(2.5) 

Inversion transformation, Eq. (2.5), allows the determination of a function 
of time from its Fourier transform. If the functions h(t) and H(f) are related 
by Eqs. (2.1) and (2.5), the two functions are termed a Fourier transform 
pair, and we indicate this relationship by the notation 

h(t) ~ H(f) (2.6) 

Example 2.2 Inverse Fourier Transform of Example 2.1 

Consider the frequency function determined in the previous example: 

From Eq. (2.5), 

h - J'" [ 130: -' 21rfl3 ] j27fJt df 
(1) - _'" 0:2 + (21rf)2 J 0:2 + (21rf)2 e 

Because ei27fJt = cos(27rft) + j sin(27rft), then 

h(1) = J'" [130: cos(21rft) + 21rfl3 Sin(21rft)] df 
_00 0: 2 + (21rf)2 0:2 + (27rf)2 (2.7) 

+ j Joo [130: sin(27rft) _ 27rfl3 COS(27rft )] df 
-00 0: 2 + (21rf)2 0:2 + (21rff 

The second integral of Eq. (2.7) is zero because each integrand term is an odd func
tion. This point is clarified by examination of Fig. 2.2; the first integrand term in 
the second integral of Eq. (2.7) is illustrated. Note that the function is odd, that is, 



12 The Fourier Transform Chap. 2 

Figure 2.2 Integration of an odd function. 

g(t) = - g( - t). Consequently, the area under the function from - fo to fo is zero. 
Therefore, in the limit as f 0 approaches infinity, the integral of the function remains 
zero; the infinite integral of any odd function is zero. 

Equation (2.7) becomes 

~a Joc cos(2-rrtf) 27r~ Joc f sin(2-rrtf) 
h(t) = (2-rr)2 -oc (a/27r)2 + p df + (27r)2 _oc (a/2-rrf + p df 

From a standard table of integrals, 

Joc cos(ax) dx 
_oc b2 + x 2 

= ~ e- ab 

b 

Joc x sin(ax) d -ab 

b2 2 X = -rre -oc + x 

Hence, Eq. (2.8) can be written as 

a>O 

a>O 

(2.8) 

h(t) = ~ [_-rr_ e-(2'11"t)(al2'11")] + 2-rr~ [-rre-(2'11"t)(a/2'11")] 
(2-rr)2 (a/2-rr) (2-rrf (2.9) 

=.@.e-al+.@.e-al=~e-al t>O 
2 2 

The time function 

h(t) = ~e-al t > 0 

and the frequency function 

~ 
H(f) = a + j(27rf) 

are related by both Eqs. (2.1) and (2.5) and hence are a Fourier transform pair: 

~e -at (t > 0) 0 a + j(27rf) (2.10) 



Sec. 2.3 Existence of the Fourier Integral 13 

2.3 EXISTENCE OF THE FOURIER INTEGRAL 

To this point, we have not considered the validity of Eqs. (2.1) and (2.5); 
the integral equations have been assumed to be well-defined for all functions. 
In general, for most functions encountered in practical scientific analysis, 
the Fourier transform and its inverse are well-defined. We do not intend to 
present a highly theoretical discussion of the existence of the Fourier trans
form but rather to point out conditions for its existence and to give examples 
of these conditions. Our discussion follows that of Papoulis [3]. 

Condition 1. If h(t) is integrable in the sense 

J:oo I h(t) I dt < 00 (2.11) 

then its Fourier transform H(f) exists and satisfies the inverse Fourier 
transform of Eq. (2.5). 

It is important to note that Condition 1 is a sufficient but not necessary 
condition for the existence of a Fourier transform. There are functions that 
do not satisfy Condition 1 but have a transform satisfying Eq. (2.5). This 
class of functions is covered by Condition 2. 

Example 2.3 Symmetrical Pulse Waveform 

To illustrate Condition 1, consider the pulse time waveform 

h(t) = A I t I < To 

A 
t = ±To -

2 
(2.12) 

= 0 I t I> To 

which is shown in Fig. 2.3. Equation (2.11) is satisfied for this function; therefore, 
the Fourier transform exists and is given by 

f TO 
H(f) = Ae - j2",ft dt 

-To 

f TO fTO 
= A cos(27rft) dt - jA sin(27Tft) dt 

-Th -Th 

The second integral is equal to zero because the integrand is odd: 

A I To H(f) = 2 f sin(27rft) 
7T -To (2.13) 

= 2ATo sin(27rTof) 
27TTof 

Those terms that obviously can be canceled are retained to emphasize the [sin(af)]/ 
af characteristic of the Fourier transform of a pulse waveform, as shown in Fig. 
2.3. 
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hIt) 

A 

Figure 2.3 Fourier transform of a symmetrical-pulse time-domain waveform. 

Because this example satisfies Condition 1, then H(f) as given by Eq. (2.13) 
must satisfy Eq. (2.5). 

h(t) = foo 2ATo sin(211"Tof) ei2'rrft df 
-00 211"Tof 

f oo sin(211"Tof) . . 
= 2ATo _00 211"Tof [cos(211"ft) + J sm(211"ft)] df 

The imaginary integrand term is odd; therefore, 

h(t) = ~ foo sin(211"Tof) cos(211"ft) df 
11" -00 f 

From the trigonometric identity 

sin(x) cos(y) = Usin(x + y) + sin(x - y)] 

h(t) becomes 

h(t) = ~ foo sin[211"f(To + t)] df + ~ foo sin[211"f(To - t)] df 
211" -00 f 211" -00 f 

A 
2" 

- -~ 

Figure 2.4 Graphical evaluation of Eq. (2.19). 

A T -t 

2" ITO-ti 

-~ 
2 

(2.14) 

(2.15) 

(2.16) 
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and can be rewritten as 

h(t) = A(To + t) foo sin[21Tf(To + t)] df 
_00 21Tf(To + t) 

Because 

+ A(To - t) foo sin[21Tf(To - t)] df 
-00 21Tf(To - t) 

f oo sin(21Tax) dx = _1_ 
-00 21Tax 2 1 a 1 

(I 1 denotes magnitude or absolute value), then 

h(t) = ~ To + t + ~ To - t 
2 1 To + t 1 2 1 To - t 1 

15 

(2.17) 

(2.18) 

(2.19) 

Each term of Eq. (2.19) is illustrated in Fig. 2.4; by inspection, these terms add to 
yield 

h(t) = A 1 t 1 < To 

A 
t = ±To (2.20) = -

2 

= 0 1 t I> To 

The existence of the Fourier transform and the inverse Fourier transform has 
been demonstrated for a function satisfying Condition 1. We have established the 
Fourier transform pair (Fig. 2.3): 

h(t) = A (I t 1 < To) ~ 2ATo sin(21TTof) 
21TTof 

Example 2.4 General Pulse Time Waveform 

Consider the pulse time waveform 

h(t) = A 

A 
= -

2 

0< t < 2To 

t = 0; t = 2To 

= 0 otherwise 

which is shown in Fig. 2.5(a). The Fourier transform is given by 

f 2TO H(f) = Jo Ae -j2",!t dt 

f2~ f2~ 
= A Jo COS(21Tft) dt - jA Jo sin(21Tft) dt 

= (A/21Tf) sin(21Tft) I~TO + j(A/21Tf) COS(21Tft) I~TO 

_ 2ATo sin[21T(2To)f] . {2AT COS[21T(2To)f] 2ATo} 
- 21T(2To)f + J 0 21T(2To)f - 21T(2To)f 

(2.21) 

(2.22) 

(2.23) 
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hIt) 

A 1----... 

o 
(a) 

2To 

IH(f)1 

1 1 3 2 
(b) 2T 0 r;; 2T 0 r;; 

Blf) 

71' 

(e) 

The Fourier Transform Chap. 2 

Figure 2.5 (a) General pulse waveform, 
(b) Fourier transform amplitude func· 
tion, and (c) Fourier transform phase 
function. 

The amplitude spectrum is given by 

I H(f) I 2ATo . 2 2 
2'l1'(2To)f ism [2'l1'(2To)fl + cos [2'l1'(2To)fl 

- 2 cos[2'l1'(2To)fl + 1}1/2 (2.24) 

2ATo { 112 
2'l1'(2To)f 2 - 2 cos[2'l1'(2To)f} 

= 2ATo I sin[2'l1'Tofl I 
2'l1'Tof 

Because cos(x) - 1 = - sin2(x) and sin(x) = 2 sin(x/2) cos(x/2), then the phase 
angle is given by 

(f) = -I {COS[2'l1'(2To)fl - I} 
e tan sin[2'l1'(2To)fl 

= tan- I {-Sin[hTofl} 
cos[2'l1'Tofl 

= -hTof 

(2.25) 
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The amplitude spectrum I H(f) I and phase angle 6(f) of the Fourier transform of 
h(t) are shown in Figs. 2.5(b) and (c), respectively. Note that the tan -1(X) function 
is restricted to -1T < 6 < 1T by normal convention. 

Condition 2. If h(t) = [3(t) sin(27Tft + ex) (where f and ex are arbitrary 
constants), if [3(t + k) < [3(t), and if for I t I > A. > 0, the function h(t)/ 
t is absolutely integrable in the sense of Eq. (2.11), then H(f) exists 
and satisfies the inverse Fourier transform, Eq. (2.5). 

An important example is the function [sin(at)]/at, which does not sat
isfy the integrability requirements of Condition 1. 

Example 2.5 Pulse Frequency Waveform 

Consider the function 

h(t) = 2Afo sin(21Tfot) 
21Tfot 

(2.26) 

illustrated in Fig. 2.6. From Condition 2, the Fourier transform of h(t) exists and is 
given by 

H(f) = foe 2Af 0 sin(21Tf ot) e - j2"TfJI dt 
-oe 21Tfot 

A foe sin(21Tfot) . . 
= - [cos(21Tft) - J sm(21Tft)] dt 

1T -oe t 
(2.27) 

= ~ foe sin(21Tf ot) COS(21Tft) dt 
1T -00 t 

The imaginary term integrates to zero because the integrand term is an odd function. 
Substitution of the trigonometric identity of Eq. (2.16) gives 

H(f) = ~ JX sin[21Tt(fo + f)] dt + ~ foe sin[21Tt(fo - f)] dt 
21T -oe t 21T -oe t 

= A(fo + f) foe sin[21Tt(fo + f)] dt 
-00 21Tt(f 0 + f) 

+ A(fo - f) foe sin[21Tt(fo - f)] dt 
-oe 21Tt(fo - f) 

hIt) = 2Afo sin I~Qt) 

ot 

Figure 2.6 Fourier transform of A [sin(at)/atl. 

HIt) 

(2.28) 
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Equation (2.28) is of the same form as Eq. (2.17); identical analysis techniques yield 

H(f) = A 

A 
= -

2 

I f 1< fo 

f = ±fo 

= 0 I f I> fo 

(2.29) 

Because this example satisfies Condition 2, H(f) [Eq. (2.29)], must satisfy the 
inverse Fourier transform relationship, Eq. (2.5): 

ffO 
h(t) = Aei2'1fft df 

-fo 

= A ffo cos(21rft) df = A sin(2'lTft) I fo 
- fo 2'lTt - fo 

= 2Af 0 sin(2'lTf 01) 
2'lTf ot 

By means of Condition 2, the Fourier transform pair 

2Afo sin(2'lTfot) 0 H(f) = A 
2'lTfot 

has been established and is illustrated in Fig. 2.6. 

I f 1< fo 

(2.30) 

(2.31) 

Condition 3. Although not specifically stated, all functions for which Con
ditions 1 and 2 hold are assumed to be of bounded variation, that is, 
they can be represented by a curve of finite height in any finite time 
interval. By means of Condition 3, we extend the theory to include 
singular (impulse) functions. 

If h(t) is a periodic or impulse function, then H(f) exists only if one 
introduces the theory of distributions. Appendix A has an elementary dis
cussion of distribution theory; with the aid of this development, the Fourier 
transform of singular functions can be defined. It is important to develop 
the Fourier transform of impulse functions because their use greatly sim
plifies the derivation of many transform pairs. 

Impulse function 8(t) is defined as [Eq. (A.8)] 

J:oo 8(t - to)x(t) dt = x(to) (2.32) 

where x(t) is an arbitrary function continuous at to. Application of the defi
nition of Eq. (2.32) yields straightforwardly the Fourier transform of many 
important functions. 

Example 2.6 Impulse Function 

Consider the function 

h(t) = KB(t) (2.33) 
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hIt) = K 61t) Hlf)=K 

K 
K 

(Q 
------------~----------~ ------------+------------~ 

Figure 2.7 Fourier transform of an impulse function. 

The Fourier transform of h(t) is easily derived using the definition of Eq. (2.32): 

H(f) = Loooo K8(t)e - j2 .. ft dt = Keo = K (2.34) 

The inverse Fourier transform of H(f) is given by 

(2.35) 

Because the integrand of the second integral is an odd function, the integral is zero; 
the first integral is meaningless unless it is interpreted in the sense of distribution 
theory. From Eq. (A.2l), Eq. (2.35) exists and can be rewritten as 

h(t) = K f'oo ~2"ft df = K Loooo cos(27rft) df = K8(t) 

These results establish the Fourier transform pair 

K8(t) ~ H(f) = K 

which is illustrated in Fig. 2.7. 
Similarly, the Fourier transform pair, as shown in Fig. 2.8, 

h(t) = K ~ K8(f) 

(2.36) 

(2.37) 

(2.38) 

can be established where the reasoning process concerning existence is exactly as 
argued previously. 

Example 2.7 Periodic Functions 

To illustrate the Fourier transform of periodic functions, consider 

h(t) = A cos(27'ifot) (2.39) 

hIt)· K 

HIt) = K 61t) 
K 

K 

Figure 2.8 Fourier transform of a constant-amplitude waveform. 
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hld- A COl 12wfot) Hlf) s Rlf) 

,f\, f' f', A f', (1 f\ 
I I 
I I 

I I t I 

V V V V V 

Figure 2.9 Fourier transform of A cos(at). 

The Fourier transform is given by 

H(f) = L"'"" A cos(27rfot)e-j2 .... f ' dt 

= ~ f"" [~2""fo, + e-j2 .... fo']e-j2 .... f' dt 
2 -00 

= ~ f"" [e-j2 .... t<f-fo) + e-j2 .... '(fo+f)] dt 
2 -00 

A A 
= :.za(f - fo) + 28(f + fo) 

(2.40) 

where arguments identical to those leading to Eq. (2.36) have been employed. The 
inversion formula yields 

h( t) = Loooo [48(f + f 0) + 48(f - f 0) ] ej2 .... f ' df 

= ~~2 .... fO' + ~e -j2 .... fo' 
2 2 

= A cos(2'TTf ot) 

The Fourier transform pair 

~A A 
A cos(2'TTfot) ~ :.za(f - fo) + 28(f + fo) 

is illustrated in Fig. 2.9. 

f hIt) - A sin l2llfot) HIt) = illt) 

A 

1"1 " " l\ " ", I I , I 
I 

t 

V V V V V 

Figure 2.10 Fourier transform of A sin(at). 

(2.41) 

(2.42) 
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Similarly, the Fourier transform pair (Fig. 2.10) 

can be established. Note that the Fourier transform is imaginary. 

Example 2.8 Sequence of Impulse Functions 

21 

(2.43) 

The Fourier transform of a sequence of equidistant impulse functions is another 
sequence of equidistant impulses r3]. 

00 100 ( ) 
h(t) = ,,~oo 8(t - nT) ~ H(f) = T n~oo 8 f - ~ (2.44) 

A graphical development of this Fourier transform pair is illustrated in Fig. 2.11. 

••• 

h3(t) = 1 + 2 ~ cos 12111<fo t) 
k=1 

s 
hslt) = 1 + 2k ~ 1 cos 127rkfot) 

h It) = E Sit - nT) 
CD n =-<XI 

••• 

T 2T 

la) 

g 
fo 2fo 3fo 

Ib) 

HS(f) 

g 

Ie) 

H If) = ! E Sif - !!.) 
Tn=-oo T 

©> 
••• • •• 

(d) 

Figure 2.11 Graphical development of the Fourier transform of a sequence of 
equidistant impulse functions. 
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The importance of the Fourier transform pair of Eq. (2.44) becomes obvious in future 
discussions of discrete Fourier transforms. 

Inversion Formula Proof 

By means of distribution theory concepts, it is possible to derive a 
simple formal proof of the inversion formula of Eq. (2.5). 

Substitution of H(f) [Eq. (2.1)] into the inverse Fourier transform of 
Eq. (2.5) yields 

J:= H(f)e j 2-rr!t df = J:= ej2-rr!t df J:= h(x)e -j2-rr!x dx 

Because [Eq. (A.21)] 

J:oc ej 2-rr!t dt = 8(t) 

then an interchange of integration in Eq. (2.45) gives 

J:= H(f)ej2-rrft df = J:= hex) dx J:= ej2-rrf(t-x) df 

= J:oo h(x)8(t - x) dx 

(2.45) 

(2.46) 

But by the definition of the impulse function of Eq. (2.32), Eq. (2.46) simply 
equals h(t). This statement is valid only if h(t) is continuous. I However, if 
it is assumed that 

(2.47) 

that is, if h(t) is defined as the mid value at a discontinuity, then the inversion 
formula stilI holds. Note that in the previous examples we carefully defined 
each discontinuous function consistent with Eq. (2.47). 

2.4 ALTERNATE FOURIER TRANSFORM DEFINITIONS 

It is a well-established fact that the Fourier transform is a universally ac
cepted tool of modern analysis. Yet, to this day, there is not a common 
definition of the Fourier integral and its inversion formula. To be specific, 
the Fourier transform pair is defined as 

H(w) = QI J:oo h(t)e -jwt dt 

h(t) = Q2 J:oo H(w)ejwt dw 

w = 27rf (2.48) 

(2.49) 

1 See Appendix A. The definition of the impulse response is based on the continuity of 
the testing function h(t). 
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where the coefficients a \ and a2 assume different values depending on the 
user. Some set a\ = 1 and a2 = 1/21T; others set a\ = a2 = 1/y'2";; or set 
a\ = 1/21T and a2 = 1. Equations (2.48) and (2.49) impose the requirement 
that a \ a2 = 1/21T. Various users are then concerned with the splitting of the 
product a\a2. 

To resolve this question, we must define the relationship desired be
tween the Fourier transform and the Laplace transform and the definition 
we wish to assume for the relationship between the total energy computed 
in the time domain and the total energy computed in w, the radian frequency 
domain. For example, Parseval's Theorem states: 

J:~ h2(t) dt = 21TaT J:~ 1 H(w) 12 dw (2.50) 

If the energy computed in t is required to be equal to the energy computed 
in w, then a \ = 1/y'2";. However, if the requirement is made that the Laplace 
transform, universally defined as 

L[h(t)] = J:~ h(t)e- st dt = J:~ h(t)e-(cx+jw)t dt (2.51) 

shall reduce to the Fourier transform when the real part of s is set to zero, 
then a comparison of Eqs. (2.48) and (2.51) requires a \ = 1, i.e., a2 = 

1/21T, which is in contradiction to the previous hypothesis. 
A logical way to resolve this conflict is to define the Fourier transform 

pair as follows: 

H(f) J:~ h(t)e -j27f!t dt 

h(t) = J:~ H(f)ej27f!t df 

With this definition, Parseval's Theorem becomes 

(2.52) 

(2.53) 

and Eq. (2.52) is consistent with the definition of the Laplace transform. 
Note that as long as integration is with respect to f, the scale factor 1/21T 
never appears. For this reason, the latter definition of the Fourier transform 
pair was chosen for this book. 

2.5 FOURIER TRANSFORM PAIRS 

A pictorial table of Fourier transform pairs is given in Fig. 2.12. This graph
ical and analytical catalog is by no means complete, but does contain the 
most frequently encountered transform pairs. 
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h(t) = ,,~~ 8(t - nT) 0 H(j) = ~ ,,~~ 8 (f - ~) 

h(t) = A cos(2-rrfotl 0 H(f) = ~ 8(j - fo) 

A 
+ "2 8(j + fo) 

h(t) = A sin(2-rrfotl 0 H(f) = -j~8(j - fo) 

+j~8(j+fo) 

Figure 2.12 Catalog of Fourier transform pairs_ 
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Figure 2.12 (cont.) 
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PROBLEMS 

2.1. Determine the real and imaginary parts of the Fourier transform of each of the 
following functions: 
(a) h(t) = e -al'l -oo<t<oo 

t>O 

(b) h(t) ~{i 

{
-A 

(c) h(t) = ~ 

t = 0 

t<O 

t < 0 
t = 0 
t>O 

{ 1 cos(21rf ot) t > 0 

(d) h(t) = 2' t = 0 

o t < 0 

(0) h(t) ~{~ 
a < t < b; a, b > 0 

t = a; t = b 

elsewhere 

(f) h(t) = {~e -0<' sin(2'lTfot) t~O 

t<O 

(g) h(t) = H 8(t + a) + 8(t - a) + 8(t + ~) + 8(t - ~) ] 
2.2. Determine the amplitude spectrum I H(f) I and phase 6(f) of the Fourier trans

form of h(t): 
1 

(a) h(t) = - - 00 < t < 00 
t 

(b) h(t) = e - "", - 00 < t < 00 

(c) h(t) = A sin(21rfot) 0 :S t < 00 

(d) h(t) = Ae-O<' cos(2'lTfot) O:s t < 00 

{ At 0 < t < To 
(e) h(t) = 0 elsewhere 

(f) h(t) = cos2(21rfot) 

(g) h(t) = cos(2'lTfot) 
4 I t I :s
fo 

= 0 otherwise 

2.3. Determine the inverse Fourier transform of each of the following: 

( (f) = sin(21rfn cos(2'lTfn 
a) H 2'lTf 

(b) H(f) = (1 - p)2 I f I < 1 
= 0 otherwise 



Chap. 2 References 

f (c) H(f) (p + a)(P + 4a) 
(d) H(f) = A cos(2-rrfto) 

REFERENCES 

29 

1. ARsAc, J. Fourier Transforms and the Theory of Distributions. Englewood Cliffs, 
NJ: Prentice Hall, 1966. 

2. BRACEWELL, R. The Fourier Transform and its Applications, 2d Ed. New York: 
McGraw-Hill, 1986. 

3. PAPOULIS, A. The Fourier Integral and Its Applications, 2d Ed. New York: 
McGraw-Hill, 1984. 

4. CHAMPENEY, D. C. Fourier Transforms and Their Physical Application. New 
York: Academic Press, 1973. 



3 

FOURIER TRANSFORM 

PROPERTIES 

In dealing with Fourier transforms, there are a few properties that are basic 
to a thorough understanding. A visual interpretation of these fundamental 
properties is of equal importance to knowledge of their mathematical rela
tionships. The purpose of this chapter is to develop not only the theoretical 
concepts of the basic Fourier transform pairs, but also the meaning of these 
properties. For this reason, we use ample analytical and graphical examples. 

3.1 LINEARITY 

If x(t) and yet) have the Fourier transforms X(f) and Y(f), respectively, then 
the sum x(t) + yet) has the Fourier transform X(f) + Y(f). This property 
is established as follows: 

f:", [x(t) + y(t)]e -j2-rrft dt = f:", x(t)e -j2-rrft dt 

+ f:",y(t)e-j2-rrftdt (3.1) 

= X(f) + Y(f) 

The Fourier transform pair 

x(t) + yet) ~ X(f) + Y(f) (3.2) 

is of considerable importance becaus~ it reflects the applicability of the Four
ier transform to linear-system analysis. 
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Example 3.1 Addition of a Constant and a Sinusoid 

To illustrate the linearity property, consider the Fourier transform pairs 

x(t) = K ~ X(f) = K8(f) 

~ A A 
y(t) = A cos(27rfot) ""'====#' Y(f) = 28(f - fo) + 28(f + fo) 

By the linearity theorem, 

x(t) + y(t) = K + A cos(2'TTfot) ~ X(f) + Y(f) = K8(f) + 18(f - fo) 

A 
+ 2 8(f + fo) 
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(3.3) 

(3.4) 

(3.5) 

Figures 3.1(a), (b), and (c) illustrate each ofthe Fourier transform pairs, respectively. 

xltl Xlfl 
K 

K 

AI2 K A/2 

Figure 3.1 The linearity property. 
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3.2 SYMMETRY 

If h(t) and H(f) are a Fourier transform pair, then 

H(t) 0 h(-f) (3.6) 

The Fourier transform pair of Eq. (3.6) is established by rewriting Eq. (2.5): 

h( - t) = f:"" H(f)e -j27fft df 

and by interchanging the parameters t and f: 

h( - f) = f:"" H(t)e -j27fft dt 

Example 3.2 Pulse Time and Frequency Waveforms 

To illustrate this property, consider the Fourier transform pair: 

h(t) = A (I t I < To) 0 2ATo sin(2'lTTof) 
21TTof 

illustrated previously in Fig. 2.3. By the symmetry theorem, 

2ATo sin2~;~ot) 0 h( - f) = h(f) = A I f I < To 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

which is identical to the Fourier transform pair of Eq. (2.31) illustrated in Fig. 2.6. 
Utilization of the symmetry theorem can eliminate many complicated mathematical 
developments; a case in point is the deVelopment of the Fourier transform pair of 
Eq. (2.31). 

3.3 TIME AND FREQUENCY SCALING 

If the Fourier transform of h(t) is H(f), then the Fourier transform of h(kt), 
where k is a real constant greater than zero, is determined by substituting 
t' = kt in the Fourier integral equation: 

f "" h(kt)e-j27fft dt = foo h(t')e-j27ft'(flk) dt' = ! H(t) 
-00 -00 k k k 

(3.11) 

For k negative, the term on the right-hand side changes sign because the 
limits of integration are interchanged. Therefore, time scaling results in the 
Fourier transform pair: 

(3.12) 



Sec. 3.3 Time and Frequency Scaling 33 

When dealing with time scaling of impulses, extra care must be ex
ercised; from Eq. (A.lO), 

1 
8(at) = r;18(t) 

Example 3.3 Time Scale Expansion 

(3.13) 

The time-scaling Fourier transform property is well-known in many fields of scientific 
endeavor. As shown in Fig. 3.2, time scale expansion corresponds to frequency scale 
compression. Note that as the time scale expands, the frequency scale not only 
contracts, but the amplitude increases vertically in such a way as to keep the area 
constant. This is a well-known concept in radar and antenna theory. 

Frequency Scaling 

If the inverse Fourier transform of H(f) is h(t), the inverse Fourier 
transform of H(kf) , where k is a real constant, is given by the Fourier trans
form pair: 

rttG) ~ H(kf) (3.14) 

The relationship of Eq. (3.14) is established by substituting f' = kf into the 
inversion formula: 

JOO H(kf)ej2Trft df = Joo H(f')ej2Trf'(tlk) df' = _1_h(l.-) 
-00 -00 k I k I k 

Frequency scaling of impulse functions is given by 

1 
8(af) = r;18(f) 

Example 3.4 Frequency-Scale Expansion 

(3.15) 

(3.16) 

Analogous to time scaling, frequency-scale expansion results in a contraction of the 
time scale. This effect is illustrated in Fig. 3.3. Note that as the frequency scale 
expands, the amplitude of the time function increases. This is simply a reflection of 
the symmetry property of Eq. (3.6) and the time-scaling relationship of Eq. (3.12). 

Example 3.5 Infinite Sequence of Impulse Functions 

Many texts state Fourier transform pairs in terms of the radian frequency oo. For 
example, Papoulis [2] gives 

00 ~ 2'lT 00 ( 2n'lT) 
h(t) = n~oo 8(1 - nn ~ H(oo) = T n~oo 8 00 - T (3.17) 

By the frequency-scaling relationship of Eq. (3.16), we know that 

2'lT i 8[2'lT(f - !!.)] =1. i 8(f - !!.) 
T n=-oo T T n=-oo T 

(3.18) 



34 Fourier Transform Properties Chap. 3 

hit) HIt) 

hl~ 2HI2f) 

A 

hl!i' 4H14t) 

A 

Figure 3.2 Time-scaling property. 

and Eq. (3.17) can be rewritten in terms of the frequency variable f: 

h(t) = n~QO 8(t - nD ~ H(f) = ~ n~QO 8(f - ~) (3.19) 

which is Eq. (2.44). 
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hIt' 

A 

21112t, 

2A 

.I2. !R. 
2 2 

Hlf, 

HI!d 2 

4hl4t' HI~ 
4 

4A 

Figure 3.3 Frequency-scaling property. 

3.4 TIME AND FREQUENCY SHIFTING 
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If h(t) is shifted by a constant to, then by substituting s = t - to, the Fourier 
transform becomes 

J:"" h(t - to)e-j 271"ft dt = J:"" h(s)e-j271"f(s+to ) ds 

e -j271"fto J:"" h(s)e -j271"fs ds 

e - j271"fto H(f) 

(3.20) 
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The time-shifted Fourier transform pair is 

h(t - to) 0> H(f)e -j2'fTfto (3.21) 

Example 3.6 Phase Shifting 

A pictorial description of this pair is illustrated in Fig, 3.4. As shown, time shifting 
results in a change in the phase angle 8(f) = tan -'[l(f)IR(f)], Note that time shifting 

hIt) 

2A 

h(t- t') 

2A 

h(t- 2t') 

2A 

h(t, 4t') 

2A 

R(f) 

R(f) 

R(f) 

A 

A 
,j2 

Figure 3.4 Time-shifting property, 

1(1) 

1(1) 

A 
,.fi 

1(1) 

I(f) 
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does not alter the magmtude of the Fourier transform. This follows because 

H(f)e -j2Trfto = H(j)[cos(27Tfto) - j sin(27Tfto)] 

and hence the magnitude is given by 

where H(f) has been assumed to be real for simplicity. These results are easily 
extended to the case of H(f), a complex function. 

Frequency Shifting 

If H(f) is shifted by a constant fo, its inverse transform is multiplied 
by ei2-rrt fo 

h(t)ej2-rr.Jo ~ H(f - fo) (3.23) 

This Fourier transform pair is established by substituting s 
the inverse Fourier transform-defining relationship: 

f - fo into 

Example 3.7 Modulation 

ej2-rrt fo f:", H(s)ej2-rrst ds 

ei2-rr t fo h(t) 

(3.24) 

To illustrate the effect offrequency shifting, let us assume that the frequency function 
H(f) is real. For this case, frequency shifting results in a mUltiplication of the time 
function h(t) by a cosine whose frequency is determined by the frequency shift fo 
(Fig. 3.5). This process is commonly known as modulation. 

Example 3.8 Down Conversion by Frequency Multiplication 

A practical application of frequency shifting is illustrated in Fig. 3.6. Multiplication 
of a sinusoid of frequency 2fo with another sinusoid of frequency 3fo results in two 
sinusoids. One sinusoid has a frequency that is the sum of the frequencies of the 
multiplied sinusoids, that is, 5fo. The second sinusoid has a frequency determined 
by the difference of the two frequencies, fo. This difference-frequency sinusoid is 
commonly referred to as the down conversion term or component. 
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hIt) H(t) 

Y2[H(t-fo)" H(f .. fo)) 

Y2[H(f-2to)" H(f+2fo)) 

Figure 3.5 Frequency-shifting property. 
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h,(t)= cos[271j31.ltl 

h2/t)= cos[27T(21.ltl 

h,(t)h2/t)= cos [271j21.ltl· 
cos (271j3I. It] 

(a) 

(b) 
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·51. -41. -31. -21. -I. I. 21. 31. 41. 51. 

H2/I) 

-51. -41. -31. -21. -I. I. 21. 31. 41. 51. 

H,II) • H2/I) 

-51. -41.-31. -21. -I. I. 21. 31. 41. 51. 61. I 

Ic) 

Figure 3.6 Examples of sum and difference frequencies produced by frequency 
mUltiplication. 
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3.5 ALTERNATE INVERSION FORMULA 

The inversion formula of Eq. (2.5) can also be written as 

h(t) = [J:oo H*(f)e -j2-rrft df r (3.25) 

where H*(f) is the conjugate of H(f); that is, if H(f) = R(f) + jI(f), then 
H*(f) = R(f) - jI(f). The relationship of Eq. (3.25) is verified by simply 
performing the conjugation operations indicated. 

h(t) = [J:ooH*(f)e-j2-rrftdfr 

[ J: 00 R(f)e - j2-rrft df - j J: 00 I(f)e - j2-rrft df ] * 

[J_oooo [R(f) cos(27rft) - I(f) sin(27rft)] df 

- j J:oo [R(f) sin(21Tft) + I(f) COS(21Tft)] dfJ * 

= J:oo [R(f) cos(27rft) - I(f) sin(21Tft)] df 

+ j J:oo [R(f) sin(21Tft) + I(f) COS(21Tft)] df 

= J:oo [R(f) + jI(f)][cos(27rft) + j sin(21Tft)] df 

= J:oo H(f)ej2-rrft df 

(3.26) 

The significance of the alternate inversion formula is that now both the 
Fourier transform and its inverse contain the common term e -j2-rrft. This 
similarity is of considerable importance in the development of fast Fourier 
transform computer programs. 

3.6 EVEN AND ODD FUNCTIONS 

If he(t) is an even function, that is, he(t) = he( - t), then the Fourier trans
form of he(t) is an even function and is real: 
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This pair is established by manipulating the defining relationships: 

H(f) = J:oo heCt)e -J27ffl dt 

= J:oo heCt) cos(27rft) dt - j J:oo hAt) sin(27rft) dt 

= J_oooo heCt) cos(27rft) dt = RAf) 

41 

(3.28) 

The imaginary term is zero because the integrand is an odd function. Because 
cos(27rft) is an even function, then hAt) cos(27rft) = heCt) cos[27r( - f)t] 
and H e(f) = H e( - f); the frequency function is even. Similarly, if H(f) is 
given as a real and even frequency function, the inversion formula yields 

h(t) = J:oo HAf)eJ27ffl dt = J:oo Re(f)eJ27ffl df 

= J:oo Re(f) cos(27rft) df + j J:oo Re(f) sin(27rft) df 

= J:oo RAf) cos(27rft) df = heCt) 

Example 3.9 Even Time and Frequency Functions 

(3.29) 

As shown in Fig. 3.7, the Fourier transform of an even time function is a real and 
even frequency function; conversely, the inverse Fourier transform of a real and 
even frequency function is an even function of time. 

Odd Functions 

If hoCt) = - ho( - t), then hoCt) is an odd function, and its Fourier 
transform is an odd and imaginary function, 

H(f) = J:oohoCt)e-J27ffldt 

= J:oo hoCt) cos(27rft) dt - j J:oo hoCt) sin(27rft) dt (3.30) 

- j J:oo hoCt) sin(27rft) dt = j1o(f) 

Ilf) 

Ie) Ib) Ie) 

Figure 3.7 Fourier transform of an even function. 
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The real integral is zero because the multiplication of an odd and an even 
function is an odd function. Because sin(27Tft) is an odd function, then hoCt) 
sin(27Tft) = - ho(t) sin[27T( - f)t] and Ho(f) = - Ho( - f); the frequency 
function is odd. For H(f) given as an odd and imaginary function, then 

h(t) = J:= H(f)ej27rft dt = j J:= lo(f)ej27rft df 

= j J:= lo(f) COS(27Tft) df + P J:= lo(f) sin(27Tft) df (3.31) 

= - J:= lo(f) sin(27Tft) df = ho(t) 

and the resulting hoCt) is an odd function. The Fourier transform pair is thus 
established: 

(3.32) 

Example 3.10 Odd Time and Frequency Functions 

An illustrative example of this transform pair is shown in Fig. 3.8. The function h(t) 
depicted is odd; therefore, the Fourier transform is an odd and imaginary function 
of frequency. If a frequency function is odd and imaginary, then its inverse transform 
is an odd function of time. 

hCt) RCf) 

Figure 3.8 Fourier transform of an odd function. 

3.7 WAVEFORM DECOMPOSITION 

An arbitrary function can always be decomposed or separated into the sum 
of an even and an odd function: 

h(t) = hCt) + h(t) 
2 2 

= [h;t) + h( ~ t) ] + [h;t) _ h( ~ t) ] (3.33) 

= hAt) + hoCt) 

The terms in brackets satisfy the definitions of even and odd functions, 
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respectively. From Eqs. (3.27) and (3.32), the Fourier transform of Eq. (3.33) 
is 

H(f) = R(f) + jI(f) = HeCf) + Ho(f) (3.34) 

where He(f) = R(f) and Ho(f) = jICf). We show in Chapter 9 that decom
position can increase the speed of computation of the FFT. 

Example 3.11 Exponential Waveform Decomposition 

To demonstrate the concept of waveform decomposition, consider the exponential 
function [Fig. 3.9(a)] 

h(t) = e -at t~O (3.35) 

Following the developments leading to Eq. (3.33), we obtain 

h(t) = [e;at] + [e;at] 

{[e-at ] [eat]} + {[e-a,] [ea,]} 
-2- ,""0 + 2 tsO -2- ,"'0 - 2 tsO (3.36) 

= {e-al'l} + {[e-a,] _ [ea,] } 
2 2 ,"'0 2 'so 

= {he(t)} + {ho(t)} 

Figures 3.9(b) and (c) illustrate the even and odd decompositions, respectively. 

Figure 3.9 Waveform decomposition 
property. 

hCt) = .·at 

Ca) 

h.Ct) = %e.altl 

Cb) 

%e-at 

Ce) 
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3.8 COMPLEX TIME FUNCTIONS 

For ease of presentation, we have to this point considered only real functions 
of time. The Fourier transform, Eq. (2.1), the inversion integral, Eq. (2.5), 
and the Fourier transform properties hold for the case of h(t), a complex 
function of time. If 

(3.37) 

where hr(t) and hi(t) are the real and imaginary parts of the complex function 
h(t), respectively, then the Fourier integral, Eq. (2.1), becomes 

H(f) = J:oo [hr(t) + jhi(t)]e -j2-rrft dt 

= J:oo [hr(t) cos(27rft) + hi(t) sin(27rft)] dt 

- j J:oo [hr(t) sin(27rft) - h;(t) cos(27rft)] dt 

= R(f) + jl(f) 

Therefore, 

(3.38) 

R(f) = J:oo [hr(t) cos(27rft) + hi(t) sin(27rft)] dt (3.39) 

l(f) = - J:oo [hr(t) sin(27rft) - hi(t) cos(27rft)] dt (3.40) 

Similarly, the inversion formula, Eq. (2.5), for complex functions yields 

hr(t) = f:oo [R(f) cos(27rft) - l(f) sin(27rft)] df (3.41) 

hi(t) = J:oo [R(f) sin(27rft) + l(f) cos(27rft)] df (3.42) 

If h(t) is real, then h(t) = hr(t) and the real and imaginary parts of the 
Fourier transform are given by Eqs. (3.39) and (3.40), respectively: 

Re(f) = f:oo hr(t) cos(27rft) dt 

lo(f) = - J:oo hr(t) sin(27rft) dt 

(3.43) 

(3.44) 

RAf) is an even function because Re(f) = ReC - f). Similarly, lo( - f) = 

- 10 (f) and lo(f) is odd. 
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For h(t) purely imaginary, h(t) = jhi(t) and 

Ro(f) J:= hi(t) sin(27rft) dt (3.45) 

IAf) = J:= hi(t) cos(27rft) dt (3.46) 

Ro(f) is an odd function and I Af) is an even function. Table 3.1 lists various 
complex time functions and their respective Fourier transforms. 

Example 3.12 Simultaneous Fourier Transforms 

We can employ the relationships of Eqs. (3.43), (3.44), (3.45), and (3.46) to simul
taneously determine the Fourier transform of two real functions. To illustrate this 
point, recall the linearity property of Eq. (3.2): 

x(t) + y(t) 0 X(f) + Y(f) (3.47) 

Let x(t) = h(t) and y(t) = jg(t), where both h(t) and g(t) are real functions. It 
follows that X(f) = H(f) and Y(f) = jG(f). Because x(t) is real, then from Eqs. 
(3.43) and (3.44) 

x(t) = h(t) 0 X(f) = H(f) = R.(f) + jIo(f) (3.48) 

Similarly, because y(t) is imaginary, then from Eqs. (3.45) and (3.46) 

Hence, 

y(t) = jg(t)OY(f) = jG(f) = Ro(f) + j1e(f) (3.49) 

h(t) + jg(t) 0 H(f) + jG(f) 

TABLE 3.1 Properties of the Fourier Transform for 
Complex Functions 

Real 

Time domain 
h(t) 

Imaginary 

Real even, imaginary odd 

Real odd, imaginary even 

Real and even 

Real and odd 

Imaginary and even 

Imaginary and odd 

Complex and even 

Complex and odd 

Frequency domain 
H(f) 

Real part even 
Imaginary part odd 

Real part odd 
Imaginary part even 

Real 

Imaginary 

Real and even 

Imaginary and odd 

Imaginary and even 

Real and odd 

Complex and even 

Complex and odd 

(3.50) 
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where 

Thus, if 

H(f) = Re(f) + j1o(f) 

G(f) = I e(f) - jRo(f) 

z(t) = h(t) + jg(t) 

then the Fourier transform of z(t) can be expressed as 

Z(f) = R(f) + jI(f) 

= [R~f) + R( ~ f)] + [R~) _ R( ~ f) ] 

+ j[ I~) + 1(; f)] + j[ I~) _ 1(; f) ] 

and from Eqs. (3.51) and (3.52) 

H(f) = [R~) + R(~f)] + j[I~) _ I(;f)] 

G(f) = [I~) + 1(; f)] _ j[ R~f) _ R( ~ f) ] 

(3.51) 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

Thus, it is possible to separate the frequency function Z(f) into the Fourier trans
forms of h(t) and g(t). As is demonstrated in Chapter 9, this technique is used ad
vantageously to increase the speed of computation of the FFT. 

3.9 SUMMARY TABLE OF FOURIER TRANSFORM 
PROPERTIES 

For future reference, the basic properties of the Fourier transform are sum
marized in Table 3.2. These relationships are of considerable importance 
throughout the remainder of the book. 

PROBLEMS 

3.1. Let 

{1_~ h(t) = 

I t 1< 2 

t = ±2 

I t I> 2 

{
-A 

x(t) = :i I t 1< 1 

t = ± 1 

I t I> 1 
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TABLE 3.2 Properties of Fourier Transforms 

Time domain Equation number Frequency domain 

Linear addition (3.2) Linear addition 
x(t) + y(/) X(f) + Y(f) 

Symmetry 
(3.6) Symmetry 

H(t) h( - f) 

Time scaling Inverse scale change 
h(kt) 0.12) 

mH(f) 

Inverse scale change Frequency scaling 

mh(£) 
0.14) H(kf) 

Time shifting 
(3.21) Phase shifting 

h(t - 10) H(f)e - j2nJto 

Modulation 
0.23) 

Frequency shifting 
h(t)~htJo H(f - fo) 

Even function 
(3.27) 

Real function 
h,(t) H,(f) = R,(f) 

Odd function 
0.30) 

Imaginary 
hoW H o(f) = jI o(f) 

Real function 
0.43) 

Real part even 
h(t) = h,(t) 

0.44) 
Imaginary part odd 
H(f) = RAf) + jIo(f) 

Imaginary function (3.45) Real part odd 
h(/) = jh;(t) 

(3.46) Imaginary part even 
H(f) = Ro(f) + jl,(f) 

Sketch h(t), x(t), and [h(t) - x(l)]. Use the Fourier transform pair of Eq. 
(2.21) and the linearity theorem to find the Fourier transform of [her) - x(t)]. 

3.2. Consider the functions h(t) illustrated in Fig. 3.10. Use the linearity property 
to derive the Fourier transform of h(t). 

3.3. Use the symmetry theorem and the Fourier transform pairs of Fig. 2.12 to 
determine the Fourier transform of the following: 

( ) h( ) = A 2 sin2(21TTot) 
a t (1Ttf 

0: 2 

(b) h(t) = (0:2 + 41T2t2) 

(e) h(t) = exp ( - :2t2) 

3.4. Derive the frequency-scaling property from the time-scaling property by means 
of the symmetry theorem. 

3.5. Consider 

{
A2 A21tl 

h(t) = 0 2To 
I t 1< 2To 

I t I> 2To 
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h(t) 

••• A ••• 

-510 -310 -10 10 310 510 

(a) 

hIt) 

••• • •• A 

-510 -310 -10 10 310 510 

-A 

(b) 

Figure 3.10 Functions for Problem 3.2. 

Sketch the Fourier transform of h(2t), h(4t), and h(8t). (The Fourier transform 
of h(t) is given in Figure 2.12.) 

3.6. Derive the time-scaling property for the case where k is negative. 
3.7. By means of the shifting theorem, find the Fourier transform of the following 

functions: 
(a) h(t) = A sin[2'T1'fo(t - to)] 

'TI'(t - to) 
(b) h(t) = K'&(t - to) 

A 2 --lt- tol 
{ 

A2 

(c) h(t) = 0 2To 

3.8. Show that 

I t - to I < 2To 

I t - to I > 2To 

h(at - [3) 0 _1_e-J27rf3fl"H(i) 
10.1 a 

3.9. Show that I H(f) I = I e - j2-rrfto H(f) I, that is, the magnitude of a frequency 
function is independent of the time delay. 

3.10. Find the inverse Fourier transform of the following functions by using the 
frequency-shifting theorem: 

f - A sin[2'T1'To(f - fo)] 
(a) H( ) - 'TI'(j - fo) 

0. 2 
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3.11. Review the derivations leading to Eqs. (2.9), (2.13), (2.20), (2.29), (2.30), and 
(2.36). Note the mathematics that result are real for the Fourier transform of 
an even function. 

3.12. Decompose and sketch the even and odd components of the following 
functions: 

(a) h(t) = {~ l<t<2 
otherwise 

1 
(b) h(t) = [2 _ (t - 2)2] 

{ -t+1 O<t~1 
(c) h(t) = 0 otherwise 

(d) h(t) = 1 + t + t 2 + t3 

(e) h(t) = 1 + sin(2'TTjt) 

3.13. Prove each of the properties listed in Table 3.1. 

3.14. If h(t) is real, show that I H(f) I is an even function. 
3.15. By making a substitution of a variable in Eq. (2.32), show that 

1-00

00 x(t)B(at - to) dt = rhx(~) 

3.16. Prove the following Fourier transform pairs: 

(a) dh(t) 0> j2'TTjH(f) 
dt 

(b) [-j2'TTt]h(t) 0> dH(f) 
dj 

3.17. Use the derivative relationship of Problem 3.16(a) to find the Fourier transform 
of a pulse waveform given the Fourier transform of a triangular waveform. 
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4 

CONVOLUTION AND 

CORRELATION 

In Chapter 3, we investigated those properties that are fundamental to the 
Fourier transform. However, there exists a class of Fourier transform re
lationships whose importance far outranks those previously considered. 
These properties are the convolution and correlation theorems, which are 
to be discussed at length in this chapter. 

4.1 CONVOLUTION INTEGRAL 

Convolution of two functions is a significant physical concept in many di
verse scientific fields. However, as in the case of many important mathe
matical relationships, the convolution integral does not readily unveil itself 
as to its true implications. To be more specific, the convolution integral is 
given by 

yet) = J:oo x(T)h(t - T) dT = x(t) * h(t) (4.1) 

Function yet) is said to be the convolution of the functions x(t) and h(t). 
Note that it is extremely difficult to visualize the mathematical operation of 
Eq. (4.1). We develop the true meaning of convolution by graphical analysis. 

50 
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4.2 GRAPHICAL EVALUATION OF THE CONVOLUTION 
INTEGRAL 

51 

Let x(t) and h(t) be two time functions given by graphs, as represented in 
Figs. 4.1(a) and (b), respectively. To evaluate Eq. (4.1), functions X(T) and 
h(t - T) are required; X(T) and h(T) are simply x(t) and h(t), respectively, 
where the variable t has been replaced by the variable T. h( -T) is the image 
of h(T) about the ordinate axis and h(t - T) is simply the function h( - T) 
shifted by the quantity t. Functions X(T), h( -T), and h(t - T) are shown in 
Fig. 4.2. To compute the integral of Eq. (4.1), it is necessary to multiply 
and integrate the functions X(T) [Fig. 4.2(a)] and h(t - T) [Fig. 4.2(c)] for 
each value of t from - 00 to + 00. As illustrated in Figs. 4.3(a) and (h), this 
product is zero for the choice of the parameter t = - t I. The product remains 
zero until t is reduced to zero. As illustrated in Figs. 4.3(c) and (h), the 
product of X(T) and h(tl - T) is the function emphasized by shading. The 
integral of this function is simply the shaded area beneath the curve. As t 
is increased to 2tl and further to 3tl, Figs. 4.3(d), (e), and (h) illustrate the 
relationships of the functions to be multiplied as well as the resulting inte
grations. For t = 4tl, the product again becomes zero, as shown by Figs. 
4.3(t) and (h). This product remains zero for all t greater than 4t 1 [Figs. 4.3(g) 
and (h)]. If t is allowed to be a continuum of values, then the convolution 
of x(t) and h(t) is the triangular function illustrated in Fig. 4.3(h). 

The procedure described is a convenient graphical technique for eval
uating convolution integrals. Summarizing the steps: 

1. Folding. Take the mirror image of h(T) about the ordinate axis. 
2. Displacement. Shift h( -T) by the amount t. 
3. Multiplication. Multiply the shifted function h(t - T) by X(T). 

4. Integration. The area under the product of h(t - T) and X(T) is the value 
of the convolution at time t. 

x(t) hIt) 

% t------, 

(a) (b) 

Figure 4.1 Example waveforms for convolution. 
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x(T) 

(II 

h(-T) 

-1 

(bl 

h(t-TI 

(el 

T 

T 

T 

Convolution and Correlation Chap. 4 

Figure 4.2 Graphical illustration of fold
ing and displacement operations. 

-tl 0 t, 2tl 3t, 4tl 5tl t 

Ihl 

Figure 4.3 Graphical example of convolution; I. = 1/2. 

Example 4.1 Convolution Procedure 

To illustrate further the rules for graphical evaluation of the convolution integral, 
convolve the functions illustrated in Figs. 4.4(a) and (b). First, fold h(T) to obtain 
h( -T), as illustrated in Fig. 4.4(c). Next, displace or shift h( -T) by the amount t, 
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hIT) =e-T x(T) 

T 

(a) (b) 

h(-T) 

FOLDING eT 

(e) 

h(t 'T) 

DISPLACEMENT ===> 
(d) 

T 

x(T)h(t -T) 

MULTIPLICATION ===> 
Ie) t = t' T 

INTEGRATION ===> ,..,-t' 

(f) 

Figure 4.4 Convolution procedure: folding, displacement, multiplication, and 
integration. 
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as shown in Fig. 4.4(d). Then, multiply h(1 - T) by X(T) [Fig. 4.4(e)] and, finally, 
integrate to obtain the convolution result for time If [Fig. 4.4(f)]. 

The result illustrated in Fig. 4.4(f) can be determined directly from Eq. (4.1): 

y(l) = J"" x(T)h(t - T) dT = (' (l)e -(t-T) dT 
-~ Jo (4.2) 

= e-/(eTI~) = e-/[e l - 1] = 1 - e- I 

Note that the general convolution integration limits of -00 to +00 be
come 0 to t for Ex. 4.1. It is desired to develop a straightforward approach 
to find the correct integration limits. For Ex. 4.1, the lower nonzero value 
of the function h(t - T) = e -(t-T) is - 00 and the lower nonzero value for 
X(T) is O. When we integrated, we chose the largest of these two values as 
our lower limit of integration. The upper nonzero value of h(t - T) is t; the 
upper nonzero value of X(T) is 00. We chose the smallest of these two for our 
upper limit of integration. 

A general rule for determining the limits of integration can then be 
stated as follows: 

Given two functions with lower nonzero values of L I and L2 and upper 
nonzero values of U I and U 2, choose the lower limit of integration as 
max[L I ,L2 ] and the upper limit of integration as min[ U I, U 2]' 

It should be noted that the lower and upper nonzero values for the 
fixed function X(T) do not change; however, the lower and upper nonzero 
values of the sliding function h(t - T) change as t changes. Thus, it is possible 
to have different limits of integration for different ranges of t. A graphical 
sketch similar to Fig. 4.4 is also an extremely valuable aid in choosing the 
correct limit of integration. 

4.3 ALTERNATE FORM OF THE CONVOLUTION 
INTEGRAL 

The previous graphical illustration is but one of the possible interpretations 
of convolution. Equation (4.1) can also be written equivalently as 

y(t) = J:oo h(T)X(t - T) dT 

Hence, either h(T) or X(T) can be folded and shifted. 

(4.3) 

To see graphically that Eqs. (4.1) and (4.3) are equivalent, consider 
the functions illustrated in Fig. 4.5(a). It is desired to convolve these two 
functions. The series of graphs on the left in Fig. 4.5 illustrate the evaluation 
of Eq. (4.1); the graphs on the right illustrate the evaluation of Eq. (4.3). 
The previously defined steps of (1) folding, (2) displacement, (3) multipli-
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• 
T 

(e) 
T 

h(·TI 

r" <== FOLDING ~ 

.. 
T 

(b) T 

h(t-TI 

~ DISPLACEMENT ~ 

T 
(e) d-- T 

x(Tlh(t-TI h(Tlx(t-TI 

¢:MULTlPLICATION::::::» 

T 
(d) 

T 

vet) vet) 

(e) 

Figure 4.5 Graphical example of convolution by Eqs. (4.1) and (4.3). 

cation, and (4) integration are illustrated by Figs. 4.5(b), (c), (d), and (e), 
respectively. As indicated by Fig. 4.5(e), the convolution of x(-r) and h(T) is 
the same irrespective of which function is chosen for folding and 
displacement. 
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Example 4.2 Equivalence of Eqs. (4.1) and (4.3) 

Let 

h(t) = e-' t~O 

= 0 t < 0 

and 

x(t) sin t 

= 0 otherwise 

Find h(t) * x(t) using both Eqs. (4.1) and (4.3). 
From Eq. (4.1) 

y(t) 

y(t) '!T 
t ~-

2 
t~O 

Chap. 4 

(4.4) 

(4.5) 

(4.6) 

The integral limits are easily determined by using the procedure described previously. 
The lower and upper nonzero values of the function X(T) are 0 and '!T/2, respectively. 
For the function h(t - T) = e-<r- T ), the lower nonzero value is -00 and the upper 
nonzero value is t. We take the maximum of the lower nonzero values for our lower 
limit of integration, i.e., O. The upper limit of integration is a function of t. For 0 ~ 
t ~ '!T/2, the minimum of the upper nonzero values is t and hence the upper limit of 
integration is t. For t ~ '!T/2, the minimum of the upper nonzero values is '!T/2 and 
consequently the upper limit of integration for this range of t is '!T/2. A graphical 
sketch of the convolution process also yields these integration limits. 

Evaluating Eq. (4.6), we obtain 

y(t) = 1 !(:,n t - 00' t + ,-') 

- (1 + e'Tf/2) 
2 

Similarly, from Eq. (4.3), we obtain 

y(t) = {Coo h(T)X(t - T) dT 

l!o' e -T[sin(t - T)] dT 

y(t) = I' e -T[sin(t - T)] dT 
t--rr/2 

o 

t~O 

0< t ~ ~ 
2 

'!T 
t ~-

2 

'!T 
0< t <"2 

'!T 
t ~-

2 
t<O 

(4.7) 

(4.8) 
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Although Eqs. (4.8) are different from Eqs. (4.6), evaluation yields identical 
results to Eq. (4.7). 

4.4 CONVOLUTION INVOLVING IMPULSE FUNCTIONS 

The simplest type of convolution integral to evaluate is one in which either 
x(t) or h(t) is an impulse function. To illustrate this point, let h(t) be the 
singular function shown graphically in Fig. 4.6(a) and let x(t) be the rectan-

hit) 

-T T 

la) 

xlt) 

A 

Ibl 

hltl.xlt) 

A -

-T T 

leI 

Figure 4.6 Illustration of convolution involving impulse functions. 
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gular function shown in Fig. 4.6(b). For these example functions, Eq. (4.1) 
becomes 

yet) = f:"" [8(T - T) + B(T + T)]x(t - T) dT (4.9) 

Recall from Eq. (2.28) that 

f:"" B(T - T)X(T) dT = x(T) 

Hence, Eq. (4.9) can be written as 

yet) = x(t - T) + x(t + T) (4.10) 

Function yet) is illustrated in Fig. 4.6(c). Note that convolution of the func
tion x(t) with an impulse function is evaluated by simply reconstructing x(t) 
with the position of the impulse function replacing the ordinate of x(t). As 
we will see in the developments to follow, the ability to visualize convolution 
involving impulse functions is of considerable importance. 

Example 4.3 Convolution with Impulses 

Let h(t) be a series of impUlse functions, as illustrated in Fig. 4.7(a). To evaluate 
the convolution of h(r) with the rectangular pulse shown in Fig. 4.7(b), we simply 

hit) 

·2T ·T T 2T 

(e) 

xlt) 

A 

(b) 

h(t).xlt) 

- r-- - - r-- -

·2T ·T T 2T t 

Ie) 

Figure 4.7 Convolution with an infinite sequence of impulse functions. 
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reproduce the rectangular pulse at each of the impulse functions. The resulting con
volution results are illustrated in Fig. 4.7(c). 

Example 4.4 Linear-System Convolution 

Convolution of two functions is a significant physical concept in many diverse sci
entific fields. A linear system is characterized by an output that is determine'd by 
the convolution of the system input and the system impulse response. To demon
strate, consider Fig. 4.8. As shown, if the system input is an impulse, the output is 
the impulse response of the system. It is the impulse response of a system that allows 
one to express the system output in terms of the input. To illustrate this point, we 
assume the system is time-invariant, that is, if the impulse is delayed by a time t = 

o 

x(d 

x(t· TI 

T 

kox(t' + k1 x(t· T1' 

+k2 x (t ·T2' 

x(t' 

x (t' 

LINEAR SYSTEM 

h(t'h..t 

(a' 

(b, 

(e' 

(d, 

v(t' v(t' = hIt' 

v(t' = h(t· TI 

o T 

v(tI = ko hIt' + k,h(t·T" +ka h(t·T.' 

v(t' 

Figure 4.8 Graphical development of the characterization of a linear system by 
the convolution integral. 
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T, then the output response is also delayed by the same duration of time. As shown 
in Fig. 4.8(b), the input o(t - T) results in an output h(t - T). 

We also assume that the system is linear. Linear means that if the input Xj(t) 
produces the output Yi(t), then the input ktxt(t) + k2X2(t) produces the output 
kty t (t) + k 2Y2(t). As illustrated in Fig. 4.8(c), a system input composed of a series 
of delayed impulses of varying amplitudes yields an output consisting of delayed 
impulse response functions whose amplitudes are determined by the amplitude of 
the input impulse causing the response. The sum of these individual impulse re
sponses is the system output and is computed by the sum 

3 

y(t) = L k;(t - T;) (4.11) 
i=1 

To extend Eq. (4.11) to include a general waveform, consider Fig. 4.8(d). We 
divide the input into small elements of width ET ; the element has a height of x(nE T ) 

and a width of E T • If we assume that this element represents an impulse with area 
[x(nET)][ET], we know from the previous discussions that the output corresponding 
to this input is given by [h(t - nET)][x(nET)[ETl This output is shown in Fig. 4.8(d). 

To determine the output due to all elements, we compute the sum 

(4.12) 
n= -oc 

If we let ET --? 0 and n --? 00, such that nET --? T, we obtain 

(4.13) 

4.5 TIME·CONVOLUTION THEOREM 

Possibly the most important and powerful tool in modern scientific analysis 
is the relationship between Eq. (4.1) and its Fourier transform. This rela
tionship, known as the time-convolution theorem, allows one the complete 
freedom to convolve mathematically (or visually) in the time domain by a 
simple multiplication in the frequency domain. That is, if h(t) has the Fourier 
transform H(f) and x(t) has the Fourier transform X(f), then h(t) * x(t) has 
the Fourier transform H(f)X(f). The convolution theorem is thus given by 
the Fourier transform pair: 

h(t) * x(t) <Q H(f)X(f) (4.14) 

To establish this result, first form the Fourier transform of both sides 
of Eq. (4.1): 
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which is equivalent to (assuming the order of integration can be changed) 

Y(f) = f:"" X(T) [f:"" h(t - T)e -j2-rrft dtJ dT 

By substituting CJ" = t - T, the term in the brackets becomes 

f:"" h(CJ")e -j2-rrf(CT+T) dCJ" = e -j2-rr/T f:oo h(CJ")e -j2-rrfCT dCJ" 

= e - j2-rr/T H(f) 

Equation (4.16) can then be rewritten as 

H(f)X(f) 

The converse is proven similarly. 

Example 4.5 Convolution of Pulse Waveforms 

(4.16) 

(4.17) 

(4.18) 

To illustrate the application of the convolution theorem, consider the convolution 
of the two pulse functions shown in Figs. 4.9(a) and (b). As we have seen previously, 
the convolution of two rectangular functions is a triangular function, as shown in 
Fig. 4.9(e). Recall from the Fourier transform pair of Eq. (2.21) that the Fourier 
transform of a rectangular function is the [sin(f»)/f function illustrated in Figs. 4.9(c) 
and (d). The convolution theorem states that convolution in the time domain cor
responds to multiplication in the frequency domain; therefore, the triangular wave
form of Fig. 4.9(e) and the [sin2(f))/j2 function of Fig. 4.9(f) are Fourier transform 
pairs. Thus, we can use the theorem as a convenient tool for developing additional 
Fourier transform pairs. 

Example 4.6 Infinite Pulse-Train Waveform 

One of the most significant contributions of distribution theory results from the fact 
that the product of a continuous function and an impulse function is well-defined 
(Appendix A); hence, if h(t) is continuous at t = to, then 

h(t)8(t - to) = h(to)8(t - to) (4.19) 

This result, coupled with the convolution theorem, allows one to eliminate the te
dious derivation of many Fourier transform pairs. To illustrate, consider the two 
time functions h(t) and x(t) shown in Figs. 4.IO(a) and (b). As described previously, 
the convolution of these two functions is the infinite pulse train illustrated in Fig. 
4.IO(e). It is desired to determine the Fourier transform of this infinite sequence of 
pulses. We simply use the convolution theorem: the Fourier transform of h(t) is the 
sequence of impulse functions, the transform pair of Eq. (2.44), as illustrated in Fig. 
4.IO(c); and the Fourier transform of a rectangular function is the [sin(f»)/f function 
shown in Fig. 4.IO(d). Multiplication of these two frequency functions yields the 
desired Fourier transform. As illustrated in Fig. 4.1O(f), the Fourier transform of a 
pulse train is a sequence of impulse functions· whose amplitude is weighted by a 
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Figure 4.9 Graphical example of the convolution theorem. 
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[sin(f)]lf function. This is a well-known result in the field of radar systems. It is to 
be noted that the multiplication of the two frequency functions must be interpreted 
in the sense of distribution theory; otherwise, the product is meaningless. We can 
see that the ability to change from a convolution in the time domain to multiplication 
in the frequency domain often renders unwieldy problems rather straightforward. 
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Time-Convolution Theorem 
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Figure 4.10 Example application of the convolution theorem. 
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4.6 FREQUENCY-CONVOLUTION THEOREM 

We can equivalently go from convolution in the frequency domain to mul
tiplication in the time domain by using the frequency-convolution theorem: 
the Fourier transform of the product h(t)x(t) is equal to the convolution H(f) 

"' 1'1 

A 
2" 

-1 
f 

hIt) 

A 
1'1 1'1 

(a) 

J 

·1 
f 

H(I) 

A 
2" 

1 
f 

(e) 

MULTIPLICATION 

x(t)h(t) 

A 

" v v v 
(e) 

H(f).X(1) 

ATo 

(I) 
1 
f 

x(t) 

(b) 

X(f) 

2To 

1 
2To 

(d) 

Figure 4.11 Graphical example of the frequency-convolution theorem. 
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* X(f). The frequency-convolution theorem is 

h(t)x(t) ~ H(f) * X(f) 

65 

(4.20) 

This pair is established by simply substituting the Fourier transform pair of 
Eq. (4.14) into the symmetry Fourier transform relationship of Eq. (3.6). 

Example 4.7 Modulated Pulse Waveform 

To illustrate the frequency-convolution theorem, consider the cosine waveform of 
Fig. 4.11(a) and the rectangular waveform of Fig. 4.11(b). It is desired to determine 
the Fourier transform of the product of these two functions [Fig. 4.11 (e)]. The Fourier 
transforms of the cosine and rectangular waveforms are given in Figs. 4.11(c) and 
(d), respectively. Convolution of these two frequency functions yields the function 
shown in Fig. 4.11(0; Figs. 4.11(e) and (0 are thus Fourier transform pairs. This is 
the well-known Fourier transform pair of a single frequency-modulated pulse. 

4.7 CORRELATION THEOREM 

Another integral equation of importance in both theoretical and practical 
application is the correlation integral: 

(4.21) 

A comparison of the above expression and the convolution integral, Eq. 
(4.1), indicates that the two are closely related. The nature of this relationship 
is best described by the graphical illustrations of Fig. 4.12. The functions to 
be both convolved and correlated are shown in Fig. 4.12(a). Illustrations on 
the left depict the process of convolution as described in the previous section; 
illustrations on the right graphically portray the process of correlation. As 
evidenced in Fig. 4.12(b), the two integrals differ in that there is no folding 
of one of the integrands in correlation. The previously described rules of 
displacement, multiplication, and integration are performed identically for 
both convolution and correlation. For the special case where either x(t) or 
h(t) is an even function, convolution and correlation are equivalent; this 
follows because an even function and its image are identical and, thus, fold
ing can be eliminated from the steps in computing the convolution integral. 

Example 4.8 Correlation Procedure 

Correlate graphically and analytically the waveforms illustrated in Fig. 4.13(a). 
According to the rules for correlation, we displace h(T) by the shift t, mUltiply 

by X(T), and integrate the product x(T)h(t + T), as illustrated in Figs. 4.13(b), (c), 
and (d), respectively. 
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Figure 4.12 Graphical comparison of convolution and correlation. 
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X(T) hiT) 
a 

a T a T 

(a) 

J 
h(·t+T) 

DISPLACEMENT 
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(b) 

x(T)h (·t+T) 

MULTIPLICATION c::::::> 
a T 

(e) 

INTEGRATION 

·a 

(d) 

Figure 4.13 Correlation procedure: displacement, multiplication, and integeration. 

From Eq. (4.21), for positive displacement t, we obtain 

z(t) = L~~ x(T)h(t + T) dT 

La - t Q 
= (1)--r dT 

o a 

= ~2Ia-t = .[4a _ 1)2 
2a 0 2a 

O~t~a 

(4.22) 
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For negative displacement, see Fig. 4.13(c) to justify the limits of integration. 

f a Q 
z(t) = (1)- T dT 

t a (4.23) 

-a ~ t ~ 0 

A general rule can be developed for determining the limits of integration for 
the correlation integral (see Problem 4.14). 

Recall that convolution multiplication forms a Fourier transform pair. 
A similar result can be obtained for correlation. To derive this relationship, 
first evaluate the Fourier transform of Eq. (4.21) 

J:", z(t)e -J2'ITft dt = f-"'", [f-"'", x(T)h(t + T) dTJ e -J2'ITft dt (4.24) 

or (assuming the order of integration can be interchanged) 

Z(f) = J:", X(T) [f-"'", h(t + T)e-J2'ITft dtJ dT (4.25) 

Let a = t + T and rewrite the term in brackets as 

f:", h(a)e-J2'ITf(rr-T) da = eJ2'ITf-r f:", h(a)e-J2'ITfrr da 

= eJ2'ITf-r H(f) 

Equation (4.25) then becomes 

Z(f) = f:", x(T)eJ2'ITf-r H(f) dT 

(4.26) 

= H(f) [J:oo X(T) COS(27TfT) dT + j J:", X(T) sin(27TiT) dTJ (4.27) 

= H(f)[R(f) + j/(f)] 

Now the Fourier transform of X(T) is given by 

X(f) = J:= x(T)e-J2'ITfT dT 

= f:", X(T) COS(27TfT) dT - j J:", X(T) sin(27TfT) dT (4.28) 

= R(f) - j/(f) 

The bracketed term of Eq. (4.27) and the expression on the right in 
Eq. (4.28) are called conjugates [defined in Eq. (3.25)]. Equation (4.27) can 
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be written as 

Z(f) = H(f)x* (f) 

and the Fourier transform pair for correlation is 

J:oo x(T)h(t + T) dT ~ H(f)X*(f) 
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(4.29) 

(4.30) 

Note that if x(t) is an even function, then X(f) is purely real and X(f) 
X*(f). For these conditions, the Fourier transform of the correlation 

integral is H(f)X(f), which is identical to the Fourier transform of the con
volution integral. These arguments for identity of the two integrals are simply 
the frequency-domain equivalents of the previously discussed time-domain 
requirement for equality of the two integrals. 

If x(t) and h(t) are the same function, Eq. (4.21) is normally termed 
the autocorrelation function; if x(t) and h(t) differ, the term crosscorrelation 
is normally used. 

Example 4.9 Autocorrelation Function 

Determine the autocorrelation function of the waveform 

From Eq. (4.21), 

h(t) = e- al 

= 0 

t>O 

t<O 

t> 0 

= l'" e -aTe -a(t+T) dT t < 0 

e -alii 

2a 
-oo<t<oo 

PROBLEMS 

4.1. Prove the following convolution properties: 
(a) Convolution is commutative: [h(t) * x(t)] = [x(t) * h(t)] 
(b) Convolution is associative: h(t) * [g(t) * x(t)] = [h(t) * g(t)] * x(t) 

(4.31) 

(4.32) 

(c) Convolution is distributive over addition: h(t) * [g(t) + x(t)) = h(t) * g(t) 
+ h(t) * x(t) 

4.2. Determine h(t) * g(t), where 
(a) h(t) = e- al t>O 

= 0 t < 0 
g(t) = e- bl t>O 

= 0 t < 0 
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(b) h(t) = te- t t ~ 0 
= 0 t < 0 

g(t) = e -t t > 0 
= 0 t < 0 

(c) h(t) = te- t t ~ 0 
= 0 t < 0 

g(t) = et t < - I 
=0 t>-I 

(d) h(t) = 2e 3t t > 1 
= 0 t < 0 

g(t) = 2e t t < 0 
= 0 t > 0 

(e) h(t) = sin(2'lTt) 0 !5 t !5 ! 
= 0 elsewhere 

g(t) = I 0 < t < i 
= 0 t < 0; t > i 

(0 h(t) = I - t 0 < t < I 
= 0 t < 0; t > I 

g(t) = h(t) 
(g) h(t) = (a - I t I )3 -a!5t!5a 

elsewhere = 0 
g(t) = h(t) 

(h) h(t) = e -at 

= 0 
g(t) = I - t 

= 0 

t>O 
t < 0 
O<t<1 
t < 0; t > I 

Convolution and Correlation Chap. 4 

4.3. Sketch the convolution of the functions x(t) and h(t) illustrated in Fig. 4.14. 
4.4. Sketch the convolution of the two odd functions x(t) and h(t) illustrated in 

Fig. 4.15. Show that the convolution of two odd functions is an even function. 
4.5. Use the convolution theorem to graphically determine the Fourier transform 

of the functions illustrated in Fig. 4.16. 
4.6. Analytically, determine the Fourier transform of e- at2 * e-~t2. (Hint: Use the 

convolution theorem.) 
4.7. Use the frequency convolution theorem to graphically determine the Fourier 

transform of the product of the functions x(t) and h(t) illustrated in Fig. 4.17. 
4.8. Graphically determine the correlation of the functions x(t) and h(t) illustrated 

in Fig. 4.14. 
4.9. Let h(t) be a time-limited function that is nonzero over the range 

-To To 
--!5t!5-

2 2 

Show that h(t) * h(t) is nonzero over the range - To !5 t !5 To; that is, h(t) * 
h(t) has a "width" twice that of h(t). 

4.10. Show that if h(t) = f(t) * g(t), then 

dh(t) = df(t) * g(t) = f(t) * dg(t) 
dt dt dt 



Chap. 4 Problems 71 

x(t) hIt) 

(a) 

x(t) hIt) 

(b) 

xlt) hIt) 

(e) 

Figure 4.14 Functions x(t) and h(t) for Problems 4.3 and 4.8. 

x(tl h(tl 

Figure 4.15 Functions x(t) and h(t) for Problem 4.4. 

4.11. By means of the frequency-convolution theorem, graphically determine the 
Fourier transform of a half-wave rectified waveform. Using this result, incor
porate the shifting theorem to determine the Fourier transform of a full-wave 
rectified waveform. 

4.12. Graphically find the Fourier transform of the following functions: 
(a) h(t) = A cos2 (27rfot) 
(b) h(t) = A sin2(27rfot) 
(c) h(t) = A cos2 (27rfot) + A cos2 (7rfot) 

4.13. Graphically find the inverse Fourier transform of the following functions: 

(a) [Si~~;f)r 
1 

(b) (1 + j27rff 
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Figure 4.16 Functions for Problem 4.5. 
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Figure 4.17 Functions x(t) and h(t) for Problem 4.7. 

(c) e -12.,..fl 

(d) 1 - e- 1fl 
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\ 

Chap. 4 

4.14. Develop a set of rules for determining the limits of integration for the corre
lation integral. 
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5 

FOURIER SERIES AND 

SAMPLED WAVEFORMS 

In the technical literature, Fourier series are normally developed indepen
dently of the Fourier integral. However, with the introduction of distribution 
theory, Fourier series can be theoretically derived as a special case of the 
Fourier integral. This approach is significant in that it is fundamental in 
considering the discrete Fourier transform as a special case of the Fourier 
integral. Also fundamental to an understanding of the discrete Fourier trans
form is the Fourier transform of sampled waveforms. In this chapter, we 
relate both of these relationships to the Fourier transform and thereby pro
vide the framework for the development of the discrete Fourier transform 
in Chapter 6. 

5.1 FOURIER SERIES 

A periodic function y(t) with period To expressed as a Fourier series is given 
by the expression 

ao 
y(t) = - + L [an cos(27rnfot) + bn sin(27rnfot)] 

2 
(5.1) 

n~1 

where fo is the fundamental frequency equal to 1ITo. The magnitude of the 
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sinusoids or coefficients are given by the integrals 

2 f TO/2 
an = -T y(t) cos(27rnfot) dt 

o - To/2 
n = 0, 1, 2, 3, ... 

2 f TO/2 bn = -T y(t) sin(27rnfot) dt 
o - To/2 

n = 1,2,3, ... 

By applying the identities 

and 

cos(27rnfot) = !(e-i21Tnfot + e -j21Tnfo t ) 
2 

sin(27rnfot) = ;/ej21Tnfot - e -j21Tnfo t ) 

the expression of Eq. (5.1) can be written as 

ao 1 ~ '2 f y(t) = - + - £.J (an - jbn)eJ 1Tn ot 
2 2 n~1 

1 00 

+ - L (an + jb n)e - j21Tnfot 

2 n~1 

75 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

To simplify this expression, negative values of n are introduced in Eqs. (5.2) 
and (5.3). 

2 f TO/2 a- n = -T y(t) cos( -27rnfot) dt 
o - To/2 

2 f TO/2 = -T y(t) cos(27rnfot) dt 
o -To/2 

(5.7) 

= an n = 1,2,3, ... 

2 f TO/2 b-n = -T y(t) sin( -27rnfot) dt 
o - To/2 

2 f TO/2 --T y(t) sin(27rnfot) dt 
o -Tol2 

(5.8) 

-bn n = 1,2,3, ... 

Hence, we can write 

(5.9) 
n~1 n~ -I 
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and 

L jb n e - j2'TtnJot = L jb n ej2'TtnJ ot 

n=1 n= -I 

Substitution of Eqs. (5.9) and (5.10) into Eq. (5.6) yields 

ao I 00 

y(t) = - + - L (an - jb n )ej 2'TtnJ ot 
2 2 n =-00 

n= -= 

Chap. 5 

(5.10) 

(5.Il) 

Equation (5.Il) is the Fourier series expressed in exponential form; coef
ficients an are, in general, complex. Because 

n = 0, ± I, ± 2, ... 

the combination of Eqs. (5.2), (5.3), (5.7), and (5.8) yields 

I f TO/2 
an = - y(t)e -j2'TtnJot dt 

To - To/2 
n = 0, ±I, ±2, .. (5.12) 

The expression of the Fourier series in exponential form, Eg. (5.Il), and 
the complex coefficients in the form of Eg. (5.12) is normally the preferred 
approach in analysis. 

Example 5.1 Triangular-Waveform Fourier Series 

Determine the Fourier series of the periodic function illustrated in Fig. 5.1. 

From Eq. (5.12), because y(t) is an even function, then 

1 JTO!2 -T y(t) cos(27rnfot) dt 
o - To!2 

an = Tl JO (T2 + T42t) cos(27rnfot) dt 
o - To!2 0 0 

+ ;0 LTO
!2 (~O - ;6 t) cos(27rnf ot) dt n = 0, 1, 3, 5, ... 

o n = 2,4,6, ... (5.13) 

l ~:T' ~, 
To 

n = 1,3,5, ... 

an = 

n = 0 
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\ 

Hence, 
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vlt) 

Figure 5.1 Periodic triangular waveform. 

/ 
/ 

/ 

1 8 [ 1 1 J y(t) = To + 7r2To cos(27rfot) + 32 cos(67rfot) + 52 cos(107rfot) + ... 

where fo = liTo. 

5.2 FOURIER SERIES AS A SPECIAL CASE 
OF THE FOURIER INTEGRAL 

(5.14) 

Consider the periodic triangular function illustrated in Fig. 5.2(e). From Ex. 
5.1, we know that the Fourier series of this waveform is an infinite set of 
sinusoids. We will now show that an identical relationship can be obtained 
from the Fourier integral. 

To accomplish the derivation, we utilize the convolution theorem, Eq. 
(4.14). Note that the periodic triangular waveform (period To) is simply the 
convolution of the single triangle shown in Fig. 5.2(a) and the infinite se
quence of equidistant impulses illustrated in Fig. 5.2(b). The periodic func
tion yet) can then be expressed by 

y(t) = h(t) * x(t) (5.15) 

Fourier transforms of both h(t) and x(t) have been determined previously 
and are illustrated in Figs. 5.2(c) and (d), respectively. From the convolution 
theorem, the desired Fourier transform is the product of these two frequency 

77 
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hltl xltl 
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leI 
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\ 

Xlfl 

lITo 
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-r;, -r;, -1 1 

-r;, To 

leI Idl 

Figure 5.2 Graphical convolution theorem development of the Fourier transform 
of a periodic triangular waveform. 
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functions: 

Y(f) = H(f)X(f) 

= H(f)-.l :i: 8 (f - !!:...) 
To n~-oo To 

(5.16) 

- -.l :i: H(!!:...) 8 (f - !!:...) 
To n= _00 To To 

Equations (2.44) and (4.19) were used to develop Eq. (5.16). 
The Fourier transform of the periodic function is then an infinite set 

of sinusoids (i.e., an infinite sequence of equidistant impulses) with ampli
tudes of H(nITo). Recall that the Fourier series of a periodic function is an 
infinite sum of sinusoids with amplitudes given by Un, Eq. (5.12). But note 
that because the limits of integration of Eq. (5.12) are from - To12 to To/2 
and because 

h(t) = y(t) 
To To -- < t <-
2 2 

(5.17) 

the function y(t) can be replaced by h(t) and Eq. (5.12) can be rewritten in 
the form: 

1 f TO/2 Un = - h(t)e - j27rnfot dt 
To -To/2 (5.18) 

= -.l H(nfo) = -.l H(!!:...) 
To To To 

Thus, the coefficients as derived by means of the Fourier integral and those 
of the conventional Fourier series are the same for a periodic function. Also, 
a comparison of Figs. 5.2(c) and (f) reveals that except for a factor liTo, 
the coefficients Un of the Fourier series expansion of y(t) equal the values 
of the Fourier transform H(f) evaluated at nlTo. 

In summary, we point out again that the key to the preceding devel
opment is the incorporation of distribution theory into Fourier integral the
ory. As will be demonstrated in the discussions to follow, this unifying con
cept is basic to a thorough understanding of the discrete Fourier transform 
and hence the fast Fourier transform. 

5.3 WAVEFORM SAMPLING 

In the preceding chapters, we have developed a Fourier transform theory 
that considers both continuous and impulse functions oftime. Based on these 
developments, it is straightforward to extend the theory to include sampled 
waveforms, which are of particular interest in this book. We have developed 
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sufficient tools to investigate in detail the theoretical as well as the visual 
interpretations of sampled waveforms. 

If the function h(t) is continuous at t = T, then a sample of h(t) at time 
equal to T is expressed as 

h(t) = h(t)8(t - T) = h(T)8(t - T) (5.19) 

where the product must be interpreted in the sense of distribution theory 
[Eq. (A.12)]. The impulse that occurs at time T has an area equal to the 
function value at time T. If h(t) is continuous at t = nT for n = 0, ± 1, 
±2, ... , 

h(t) = ~ h(nT)8(t - nT) (5.20) 
n= -00 

h(t) is termed the sampled waveform h(t) with sample interval T. Sampled 
h(t) is then an infinite sequence of equidistant impulses, each of whose 
amplitude is given by the value of h(t) corresponding to the time of occur
rence of the impulse. Figure 5.3 illustrates graphically the sampling concept. 
Since Eq. (5.20) is the product of the continuous function h(t) and the se
quence of impulses, we can employ the frequency-convolution theorem, Eq. 
(4.17), to derive the Fourier transform of the sampled waveform. As illus
trated in Fig. 5.3, the sampled function [Fig. 5.3(e)] is equal to the product 
of the waveform h(t) shown in Fig. 5.3(a) and the sequence of impulses d(t) 
illustrated in Fig. 5.3(b). We call d(t) the sampling function; the notation 
d (t) will always imply an infinite sequence of impulses separated by T. The 
Fourier transforms of h(t) and d(t) are shown in Figs. 5.3(c) and (d), re
spectively. Note that the Fourier transform of the sampling function d(t) is 
a(f); this function is termed the frequency-sampling function. From the 
frequency-convolution theorem, the desired Fourier transform is the con
volution of the frequency functions illustrated in Figs. 5.3(c) and (d). The 
Fourier transform of the sampled waveform is then a periodic function, 
where one period is equal, within a constant, to the Fourier transform of 
the continuous function h(t). This last statement is valid only if the sampling 
interval T is sufficiently small. 

If T is chosen too large, the results illustrated in Fig. 5.4 are obtained. 
Note that as the sample interval T is increased [Figs.15.3(b) and 5.4(b)], the 
equidistant impulses of a(f) become more closely spaced [Figs. 5.3(d) and 
5.4(d)]. Because of the decreased spacing of the frequency impulses, their 
convolution with the frequency function H(f) [Fig. 5.4(c)] results in the 
overlapping waveform illustrated in Fig. 5.4(0. This distortion of the desired 
Fourier transform of a sampled function is known as aliasing. As described, 
aliasing occurs because the time function was not sampled at a sufficiently 
high rate, i.e., the sample interval T is too large. It is then natural to pose 
the question: How does one ensure that the Fourier transform of a sampled 
function is not aliased? An examination of Figs. 5.4(c) and (d) points up the 
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Figure 5.3 Graphical frequency-convolution theorem development of the Fourier 
transform of a sampled waveform. 
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fact that convolution overlap occurs until the separation of the impulses of 
A(f) is increased to liT = 2Ie, where Ie is the highest frequency component 
of the Fourier transform of the continuous function h(t). That is, if the sample 
interval T is chosen equal to one-half the reciprocal of the highest frequency 
component, aliasing does not occur. This is an extremely important concept 
in many fields of scientific application; the reason is that we need only retain 
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Figure 5.4 Aliased Fourier transform of a waveform sampled at an insufficient rate. 

samples of the continuous waveform to determine a replica of the continuous 
Fourier transform. Furthermore, if a waveform is sampled such that aliasing 
does not occur, these samples can be appropriately combined to reconstruct 
identically the continuous waveform. This is merely a statement of the sam
pling theorem that we investigate in Sec. 5.4. 
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Example 5.1 Time-Domain Aliasing 

Figure 5.5 illustrates the concept of aliasing from a time-domain viewpoint. Note 
that the sample interval T was not chosen less than one-half the period of the highest 
frequency component of the time waveform. As a result, the equally spaced sample 
values shown can represent at least two sinusoids of different frequencies. In the 
time domain, aliasing is characterized by the inability to distinguish the frequency 
of the sinusoid that the sample values represent. 

Figure 5.5 Time-domain example of aliasing. 

5.4 SAMPLING THEOREMS 

The sampling theorem states that if the Fourier transform of a function h(t) 
is zero for all frequencies greater than a certain frequency fe, then the con
tinuous function h(t) can be uniquely determined from a knowledge of its 
sampled values 

h(t) = L h(nT)8(t - nT) (5.21) 
n= -00 

where T = 1I2f e' 

In particular, h(t) is given by 

h(t) = T i h(nT) sin 27rfe(t - nT) 
n= -00 7r(t - nT) 

(5.22) 

Constraints of the theorem are illustrated graphically in Fig. 5.6. First, it is 
necessary that the Fourier transform of h(t) be zero for frequencies greater 
than fe. As shown in Fig. 5.6(c), the example frequency function is band
limited at the frequency fe; the term band-limited is a shortened way of 
saying that the Fourier transform is zero for I f I > fe. The bandwidth of a 
signal is the width of the positive frequency band where the amplitude is 
nonzero. The bandwidth of the waveform illustrated in Fig. 5.6(c) is then 
fe. The second constraint is that the sample spacing be chosen as T = 11 
2fe, that is, the impulse functions of Fig. 5.6(d) are required to be separated 
by liT = 2fe. This spacing ensures that when A(f) and H(f) are convolved, 
there is no aliasing. Alternately, the functions H(f) and H(f) * ~(f), as 
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Figure 5.6 Fourier transform of a waveform sampled at the Nyquist sampling rate. 

illustrated in Figs, 5.6(c) and (f), respectively, are equal in the interval I f I 
< fe, within the scaling constant T. If T > 1I2f e, then aliasing will result; 
if T < lI2fe, the theorem still holds. The requirement that T = lI2fe is 
simply the maximum spacing between samples for which the theorem holds. 
Frequency liT = 2fe is known as the Nyquist sampling rate. Given that 
these two constraints are true, the theorem states that h(t) [Fig. 5.6(a)] can 
be reconstructed from a knowledge of the impulses illustrated in Fig. 5.6(e). 
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To construct a proof ofthe sampling theorem, recall from the discussion 
on constraints of the theorem that the Fourier transform of the sampled 
function is identical, within the constant T, to the Fourier transform of the 
un sampled function, in the frequency range - f c ::5 f ::5 f c' From Fig. 5 .6(f) , 
the Fourier transform of the sampled time function is given by H(f) * a (f). 
Hence, as illustrated in Figs. 5.7(a), (b), and (e), the multiplication of a 
rectangular-frequency function of amplitude T with the Fourier transform 

Ie) 

hit) 

CONVOLUTION 

T I--

Ie) 

·f e 

T Olf) 

Ib) 

qlt) 

Id) 

Figure 5.7 Graphical derivation of the sampling theorem. 
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of the sampled waveform is the Fourier transform H(f): 

H(f) = [H(f) * Ll(f)]Q(f) (5.23) 

The inverse Fourier transform of H(f) is the original waveform h(t), as 
shown in Fig. 5.7(f). But from the convolution theorem, h(t) is equal to the 
convolution of the inverse Fourier transforms of H(f) * Ll (f) and of the 
rectangular-frequency function. Hence, h(t) is given by the convolution of 
h(t)il(t) [Fig. 5.7(c)] and q(t) [Fig. 5.7(d)]: 

h(t) = [h(t)il(t)] * q(t) 

L [h(nT)8(t - nT)] * q(t) 
n= -00 

L h(nT)q(t - nT) 
(5.24) 

n= -00 

= T :i h(nT) sin[21Tfe(t - nT)] 
n~ -= 1T(t - nT) 

Function q(t) is given by the Fourier transform pair of Eq. (2.31). Equation 
(5.24) is the desired expression for reconstructing h(t) from a knowledge of 
only the samples of h(t). 

We should note carefully that it is possible to reconstruct a sampled 
waveform perfectly only if the waveform is band-limited. In practice, this 
condition rarely exists. The solution is to sample at such a rate that aliasing 
is negligible; it may be necessary to filter the signal prior to quantization to 
ensure that there exists, to the extent possible, a band-limited function. 

The band-limited waveforms considered in this section are referred to 
as baseband signals. This nomenclature refers to signals whose frequency 
spectrum generally occupy the frequency range 0 :::; f < fe. A band-pass 
signal is one whose frequency spectrum occupies the frequency range flow 
< f < fhigh and flow» O. The sampling theorem developed here can be 
applied to either baseband or band-pass signals. However, more efficient 
sampling theorems for band-pass signals are developed in Chapter 14. 

Frequency-Sampling Theorem 

Analogous to time-domain sampling is a sampling theorem in the fre
quency domain. If a function h(t) is time-limited, that is, 

h(t) = 0 I t I> Te (5.25) 

then its Fourier transform H(f) can be uniquely determined from equidistant 
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samples of H(f). In particular, H(f) is given by 

H(f) = _1_ i H(~) sin[27rTc(f - n12TJ] 
2Tc n~ -= 2Tc 7r(f - n12Tc) 

(5.26) 

The proof is similar to the proof of the time-domain sampling theorem. 

PROBLEMS 

5.1. Find the Fourier series of the periodic waveforms illustrated in Fig. 5.8. 
5.2. Determine the Fourier transform of the waveforms illustrated in Fig. 5.8. Com

pare these results with those of Problem 5.1. 
5.3. By using graphical arguments similar to those of Fig. 5.4, determine the Ny

quist sampling rate for the time functions whose Fourier transform magnitude 
functions are illustrated in Fig. 5.9. 

5.4. Graphically justify the band-pass sampling theorem that states that 

Critical sampling frequency = 2fhigh 
I · d' fhigh argest mteger not excee mg (f. _ f ) 

high low 

where fhigh and flow are the upper and lower cutoff frequencies of the band
pass spectrum. 

5.5. Assume that the function h(t) = cos(27rt) has been sampled at t = n/4, where 
n = 0, ± 1, ± 2, .... Sketch h(t) and indicate the sampled values. Graphically 
and analytically determine Eq. (5.24) for h (t = 7/8), where the summation is 
only over n = 2, 3, 4, and 5. 

x(t' 

I 
I 
I 
I 

-To To t 

-----
(b, 

Figure 5.8 Waveforms for Problems 5.1 and 5.2. 
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(a) 

(b) 

Figure 5.9 Functions for Problem 5.3. 

5.6. A frequency function (say a filter frequency response) has been determined 
experimentally in the laboratory and is given by a graphical curve. If it is 
desired to sample this function for computer storage purposes, what is the 
minimum frequency-sampling interval if the frequency function is to be later 
totally reconstructed? State all assumptions. 
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6 

THE DISCRETE FOURIER 

TRANSFORM 

Normally, a discussion of the discrete Fourier transform is based on an initial 
definition of the finite-length discrete transform; from this assumed axiom, 
those properties of the transform implied by this definition are derived. This 
approach is unrewarding in that at its conclusion there is always the un
answered question: How does the discrete Fourier transform relate to the 
continuous Fourier transform? To answer this question, we find it preferable 
to derive the discrete Fourier transform as a special case of continuous 
Fourier transform theory. Clearly, the discrete Fourier transform can be 
defined independently of the Fourier transform. However, many applica
tions involving the continuous Fourier transform rely on a digital computer 
for implementation, which leads to the use of the discrete Fourier transform 
and hence the FFT. Both approaches yield identical results; the distinction 
is in the interpretation of the results. 

In this chapter, we develop a special case of the continuous Fourier 
transform that is amenable to machine computation. The approach is to 
develop the discrete Fourier transform from a graphical derivation based on 
continuous Fourier transform theory. These graphical arguments are then 
substantiated by a theoretical development. Both approaches emphasize the 
modifications of continuous Fourier transform theory that are necessary to 
define a computer-oriented transform pair. We also develop properties of 
the discrete Fourier transform. 

89 
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6.1 A GRAPHICAL DEVELOPMENT 

Consider the example function h(t) and its Fourier transform H(f), as il
lustrated in Fig. 6.1(a). It is desired to modify this Fourier transform pair 
in such a manner that the pair is amenable to digital computer computation. 
This modified pair, termed the discrete Fourier transform, is to approximate 
as closely as possible the continuous Fourier transform. 

To determine the Fourier transform of h(t) by means of digital analysis 
techniques, it is necessary to sample h(t), as described in Chapter 5. Sam
pling is accomplished by multiplying h(t) by the sampling function illustrated 
in Fig. 6.1 (b). The sample interval is T. Sampled function h(t) and its Fourier 
transform are illustrated in Fig. 6.1(c). This Fourier transform pair represents 
the first modification to the original pair, which is necessary in defining a 
discrete transform pair. Note that to this point the modified transform pair 
differs from the original transform pair only by the aliasing effect that results 
from sampling. As discussed in Sec. 5.3, if the waveform h(t) is sampled at 
a frequency of at least twice the largest frequency component of h(t), there 
is no loss of information as a result of sampling. If the function h(t) is not 
band-limited, i.e., H(f) ¥- 0 for some I f I > fe, then sampling will introduce 
aliasing, as illustrated in Fig. 6.1(c). To reduce this error, we have only one 
recourse, and that is to sample faster, that is, choose T smaller. 

The Fourier transform pair in Fig. 6.1(c) is not suitable for machine 
computation because an infinity of samples of h(t) is considered; it is nec
essary to truncate the sampled h(t) so that only a finite number of points, 
say N, are considered. The rectangular, or truncation, function and its Four
ier transform are illustrated in Fig. 6.1(d). The product of the infinite se
quence of impulse functions representing h(t) and the truncation function 
yields the finite-length time function illustrated in Fig. 6.1(e). Truncation 
introduces the second modification of the original Fourier transform pair; 
this effect is to convolve the aliased frequency transform of Fig. 6.1(c) with 
the Fourier transform of the truncation function [Fig. 6.1(d)]. As shown in 
Fig. 6.1(e), the frequency transform now has a ripple to it; this effect has 
been accentuated in the illustration for emphasis. To reduce this effect, recall 
the inverse relation that exists between the width of a time function and its 
Fourier transform (Sec. 3.3). Hence, if the truncation (rectangular) function 
is increased in length, then the [sin(f)]!f function approaches an impulse; 
the more closely the [sin(f)]/f function approximates an impulse, the less 
ripple or error is introduced by the convolution that results from truncation. 
Therefore, it is desirable to choose the length of the truncation function as 
long as possible. We investigate the effect of truncation in detail in Sec. 6.4. 

The modified transform pair of Fig. 6.1(e) is still not an acceptable 
discrete Fourier transform pair because the frequency transform is a con
tinuous function. For machine computation, only sample values of the fre-
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quency function can be computed; it is necessary to modify the frequency 
transform by the frequency-sampling function illustrated in Fig. 6.1(f). The 
frequency-sampling interval is liTo. 

The discrete Fourier transform pair of Fig. 6.1(g) is acceptable for the 
purposes of digital machine computation because both the time and fre
quency domains are represented by discrete values. As illustrated in Fig. 
6.1(g), the original time function is approximated by N samples; the original 
Fourier transform H(f) is also approximated by N samples. These N samples 
define the discrete Fourier transform pair and approximate the original Four
ier transform pair. Note that sampling in the time domain results in a periodic 
function offrequency; sampling in the frequency domain results in a periodic 
function of time. Hence, the discrete Fourier transform requires that both 
the original time and frequency functions be modified such that they become 
periodic functions. N time samples and N frequency values represent one 
period of the time- and frequency-domain waveforms, respectively. Because 
the N values of time and frequency are related by the continuous Fourier 
transform, then a discrete relationship can be derived. 

6.2 THEORETICAL DEVELOPMENT 

The preceding graphical development illustrates the point that if a continuous 
Fourier transform pair is suitably modified, then the modified pair is ac
ceptable for computation on a digital computer. Thus, to develop this dis
crete Fourier transform pair, it is only necessary to derive the mathematical 
relationships that result from each of the required modifications: time-do
main sampling, truncation, and frequency-domain sampling. 

Consider the Fourier transform pair illustrated in Fig. 6.2(a). To dis
cretize this transform pair, it is first necessary to sample the waveform h(t); 
the sampled waveform can be written as h(t)ilo(t), where ilo(t) is the time
domain sampling function illustrated in Fig. 6.2(b). The sampling interval is 
T. From Eq. (5.20), the sampled function can be written as 

h(t)ilo(t) = h(t) ~ 8(t - kD 
k= -00 (6.1) 

~ h(kD8(t - kD 
k= -00 

The result of this multiplication is illustrated in Fig. 6.2(c). Note the aliasing 
effect that results from the choice of T. 

Next, the sampled function is truncated by multiplication with the rec-
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Figure 6.2 Graphical derivation of the discrete Fourier transform pair. 

tangular function x(t), as illustrated in Fig. 6.2(d): 

x(t) 
T T 

- "2 < t < To - "2 

o otherwise 

, 
\ 

(6.2) 
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where To is the duration of the truncation function. An obvious question at 
this point is: Why is the rectangular function x(t) not centered at zero or 
To/2? Centering of x(t) at zero is avoided to alleviate notation problems. 
The reason for not centering the rectangular function at T 0/2 will become 
obvious later in the development. 

Truncation yields 

(6.3) 
N-\ 

= L h(kT)8(t - kT) 
k=O 

where it has been assumed that there are N equidistant impulse functions 
lying within the truncation interval, that is, N = ToIT. The sampled truncated 
waveform and its Fourier transform are illustrated in Fig. 6.2(e). As in the 
previous example, truncation in the time domain results in rippling in the 
frequency domain. 

The final step in modifying the original Fourier transform pair to a 
discrete Fourier transform pair is to sample the Fourier transform of Eq. 
(6.3). In the time domain, this product is equivalent to convolving the sam
pled truncated waveform of Eq. (6.3) and the time function 8\(t), as illus
trated in Fig. 6.2(t). Function 8\ (t) is given by Fourier transform pair of Eq. 
(2.44) as 

r= -00 

The desired relationship is [h(t)80(t)X(t)] * 8\(t); hence, 

[h(t)80(t)X(t)] * 8\ (t) = [:~~ h(kT)8(t - kT) ] 

* [To r~oo 8(t - rTo) ] 

N-\ 

(6.4) 

... + To L h(kT)8(t + To - kT) (6.5) 
k=O 

N-\ 

+ To L h(kT)8(t - kT) 
k=O 

N-\ 

+ To L h(kT)8(t - To - kT) + 
k=O 
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Note that Eq. (6.5) is periodic with period To; in compact notation form, 
the equation can be written as 

ii(t) = To r~~ [:~~ h(kD8(t - kT - rTo) ] (6.6) 

We choose the notation h(t) to imply that h(t) is an approximation to the 
function h(t). 

Choice of the rectangular function x(t), as described by Eq. (6.2), can 
now be explained. Note that the convolution result of Eq. (6.6) is a periodic 
function with period To that consists of N samples. If the rectangular function 
had been chosen such that a sample value coincided with each end point of 
the rectangular function, the convolution of the rectangular function with 
impulses spaced at intervals of To would result in time-domain aliasing. That 
is, the Nth point of one period would coincide with (and add to) the first 
point ofthe next period. To ensure that time-domain aliasing does not occur, 
it is necessary to choose the truncation interval as illustrated in Fig. 6.2(d). 
(The truncation function can also be chosen as illustrated in Fig. 6.1(d), but 
note that the end points of the truncation function lie at the midpoint of two 
adjacent sample values to avoid time-domain aliasing.) 

To develop the Fourier transform of Eq. (6.6), recall from the discus
sion on Fourier series, Sec. 5.1, that the Fourier transform of a periodic 
function h(t) is a sequence of equidistant impulses: 

where 

1 fTO-TI2 
an = - h(t)e -j2-rrntITo dt 

To -T12 

Substituting Eq. (6.6) in (6.8) yields 

1 fo =
To 

n = 0, ±1, ±2, ... 

1 To-TI2 ~ N-) 

an = To J-T12 To r~~ k~O h(kD8(t - kT - rTo)e-j 2-rrntITo dt 

Integration is only over one period; hence, 

f
TO-TI2 N-) 

an = L h( kD8(t - kDe - j2-rrntlTo dt 
-T12 k=O 

N-) fTO-TI2 L h(kD e -j2-rrntITo 8(t - kD dt 
k=O -T12 

N-) 

L h(kT)e -j2-rrknTITo 

k=O 

(6.7) 

(6.8) 

(6.9) 
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Because To = NT, Eq. (6.9) can be rewritten as 
N-l 

an = ~ h(kDe -j2-rrknIN 
k~O 

and the Fourier transform of Eq. (6.6) is 

n = 0, ±1, ±2, ... (6.10) 

(6.11) 

For a cursory evaluation of Eq. (6.11), it is not obvious that the Fourier 
transform H(n/NT) is periodic, as illustrated in Fig. 6.2(g). However, there 
are only N distinct complex values computable from Eq. (6.11). To establish 
this fact, let n = r, where r is an arbitrary integer; Eq. (6.11) becomes 

Now let n 

H(~) = N:i1 h(kDe -j2-rrkrIN 
NT k~O 

r + N; note that 
e-j2-rrk(r+NJIN = e-j2-rrkrIN e -j2-rrk 

e - j2-rrkrlN 

(6.12) 

(6.13) 

because e-j2-rrk = COS(21Tk) - j sin(21Tk) = 1 for k integer valued. Thus, for 
n = r + N, 

H(r + N) = N:i1 h(kDe -j2-rrk(r + NJIN 
NT k~O 

N-l 
= ~ h(kDe -j2-rrkrIN 

k~O 

= H(~T) 

(6.14) 

Therefore, there are only N distinct values for which Eq. (6.11) can be 
evaluated; H(n/ND is periodic with a period of N samples. The Fourier 
transform, Eq. (6.11), can be expressed equivalently as 

H(~) = N:i1 h(kT)e-j2-rrnkIN 
NT k~O 

n = 0, 1, ... ,N - (6.15) 

Equation (6.15) is the desired discrete Fourier transform; the expres
sion relates N samples of time and N samples of frequency by means of the 
continuous Fourier transform. The discrete Fourier transform is then a spe
cial case of the continuous Fourier transform. If it is assumed that the N 
samples of the original function h(t) are one period of a periodic waveform, 
the Fourier transform of this periodic function is given by the N samples, 
as computed by Eq. (6.15). Notation H(n/ND indicates that the discrete 
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Fourier transform is an approximation to the continuous Fourier transform. 
Normally, Eq. (6.15) is written as 

G(-.!!:....) = N~ I g(kne - j2TrnkiN 
NT k=O 

n = 0, 1, ... , N - 1 (6.16) 

because the Fourier transform of the sampled periodic function g(kn is 
identically G(nl NT). 

6.3 DISCRETE INVERSE FOURIER TRANSFORM 

The discrete inverse Fourier transform is given by 

g(kn = - L G -.!!:.... ej2TrnkiN 1 N-I ( ) 

N n=O NT 
k = 0, 1, ... , N - 1 (6.17) 

To prove that Eq. (6.17) and the transform relation, Eq. (6.16), form a dis
crete Fourier transform pair, substitute Eq. (6.17) into Eq. (6.16). 

L - L G ~ ej2TrrkiN e -j2TrnklN N-I[I N- 1 
() ] 

k=O N r=O NT 

_ ! N~1 G(~) [N~I ej2TrrklNe-j2TrnklN] 
N r=O NT k=O 

(6.18) 

The identity of Eq. (6.18) follows from the orthogonality relationship: 

L ej2Trrki N e - j2Trnki N = N N-I { 

k=O ° 
r = n 
otherwise 

(6.19) 

The discrete inversion formula, Eq. (6.17), exhibits periodicity in the 
same manner as the discrete transform; the period is defined by N samples 
of g(kn. This property results from the periodic nature of ej2TrnklN. Hence, 
g(kT) is actually defined on the complete set of integers k = 0, ± 1, ± 2, 
. . . and is constrained by the identity 

g(kT) = g[(rN + k)T] r = 0, ± 1, ±2, ... (6.20) 

In summary, the discrete Fourier transform pair is given by 

g(kT) = ! N~I G(-.!!:....)ej2TrnkIN ~ G(-.!!:....) = N~I g(kne-j2TrnkIN 
N n=O NT NT k=O 

(6.21) 

It is important to remember that the transform pair of Eq. (6.21) requires 
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both the time- and frequency-domain functions to be periodic: 

G(';T) = G[(rNN; n)] r = 0, ± 1, ± 2, ... 

g(kT) = g[(rN + k)T] r = 0, ± 1, ± 2, ... 

6.4 RELATIONSHIP BETWEEN THE DISCRETE 
AND CONTINUOUS FOURIER TRANSFORM 

(6.22) 

(6.23) 

The discrete Fourier transform is of interest primarily because it approxi
mates the continuous Fourier transform. Validity of this approximation is 
strictly a function of the waveform being analyzed. In this section, we use 
graphical analysis to indicate for general classes of functions the degree of 
equivalence between the discrete and continuous transform. As will be 
stressed, differences in the two transforms arise because of the discrete 
transform requirement for sampling and truncation. 

Band-Limited Periodic Waveforms: Truncation 
Internal Equal to Period 

Consider the function h(t) and its Fourier transform, as illustrated in 
Fig. 6.3(a). We wish to sample h(t), truncate the sampled function to N 
samples, and apply the discrete Fourier transform of Eq. (6.16). Rather than 
applying this equation directly, we develop its application graphically. Wave
form h(t) is sampled by multiplication with the sampling function, as illus
trated in Fig. 6.3(b). Sampled waveform h(kT) and its Fourier transform are 
illustrated in Fig. 6.3(c). Note that for this example there is no aliasing. Also 
observe that as a result of time-domain sampling, the frequency domain has 
been scaled by the factor liT; the Fourier transform impulse now has an 
area of AI2T rather than the original area of A12. The sampled waveform is 
truncated by mUltiplication with the rectangular function, as illustrated in 
Fig. 6.3(d); Fig. 6.3(e) illustrates the sampled and truncated waveform. As 
shown, we chose the rectangular function, so that the N sample values re
maining after truncation equate to one period of the original waveform h(t). 

The Fourier transform of the finite-length sampled waveform [Fig. 
6.3(e)] is obtained by convolving the frequency-domain impulse functions 
of Fig. 6.3(c) and the [sin(f)]!f frequency function of Fig. 6.3(d). Figure 
6.3(e) illustrates the convolution results; an expanded view of this convo
lution is shown in Fig. 6.4(b). A [sin(f)]!f function (dashed line) is centered 
on each impulse of Fig. 6.4(a) and the resultant waveforms are additively 
combined (solid line) to form the convolution result. 

With respect to the original transform H(f), the convolved frequency 
function [Fig. 6.4(b)] is significantly distorted. However, when this function 
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is sampled by the frequency-sampling function illustrated in Fig. 6.3(1), the 
distortion is eliminated. This follows because the equidistant impulses of the 
frequency-sampling function are separated by liTo; at these frequencies, 
the solid line of Fig. 6.4(b) is zero except at frequency ± liTo. Frequency 
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A 
2T 

(b) 
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Figure 6.4 Expanded illustration of the convolution of Fig. 6.3(e). 

± UTo corresponds to the frequency-domain impulses of the original fre
quency function H(f). Because of time-domain truncation, these impulses 
now have an area of ATol2T rather than the original area of A12. (Figure 
6.4(b) does not take into account that the Fourier transform of the truncation 
function x(t), as illustrated in Fig. 6.4(d) , is actually a complex frequency 
function; however, had we considered a complex function, similar results 
would have been obtained.) 

Multiplication of the frequency function of Fig. 6.3(e) and the fre
quency-sampling function LlJ (f) implies the convolution of the time functions 
shown in Figs. 6.3(e) and (t). Because the sampled truncated waveform [Fig. 
6.3(e)] is exactly one period of the original waveform h(t) and because the 
time-domain impulse functions of Fig. 6.3(t) are separated by To, then their 
convolution yields a periodic function, as illustrated in Fig. 6.3(g). This is 
simply the time-domain equivalent to the previously discussed frequency 
sampling that yielded only a single impulse or frequency component. The 
time function of Fig. 6.3(g) has a maximum amplitude of ATo as compared 
to the original maximum value of A as a result offrequency-domain sampling. 

Examination of Fig. 6.3(g) indicates that we have taken our original 
time function, sampled it, and then multiplied each sample by To. The Four
ier transform of this function is related to the original frequency function by 
the factor A ToI2T. Factor To is common and can be eliminated. If we desire 
to compute the Fourier transform by means of the discrete Fourier trans-
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form, it is necessary to multiply the discrete time function by the factor T, 
which yields the desired A/2 area for the frequency function; Eq. (6.16) thus 
becomes 

H(~) = T N~I h(kT)e -j2-rrnkIN 

NT k=O 

(6.24) 

We expect this result because the relationship of Eq. (6.24) is simply the 
rectangular rule for integration of the continuous Fourier transform. 

This example represents the only class of waveforms for which the 
discrete and continuous Fourier transforms are exactly the same within a 
scaling constant. Equivalence of the two transforms requires (1) the time 
function h(t) must be periodic, (2) h(t) must be band-limited, (3) the sampling 
rate must be at least two times the largest frequency component of h(t), and 
(4) the truncation function x(t) must be nonzero over exactly one period (or 
integer multiple period) of h(t). 

Band-Limited Periodic Waveforms: Truncation 
Interval Not Equal to Period 

If a band-limited periodic function is sampled and truncated to consist 
of other than an integer multiple of the period, the resulting discrete and 
continuous Fourier transform differs considerably. To examine this effect, 
consider the illustrations of Fig. 6.5. This example differs from the preceding 
only in the frequency of the sinusoidal waveform h(t). As before, function 
h(t) is sampled [Fig. 6.5(c)] and truncated [Fig. 6.5(e)]. Note that the sampled 
truncated function is not an integer multiple of the period of h(t); therefore, 
when the time functions of Figs. 6.5(e) and (0 are convolved, the periodic 
waveform of Fig. 6.5(g) results. Although this function is periodic, it is not 
a replica of the original periodic function h(t). We would not expect the 
Fourier transform of the time waveforms of Fig. 6.5(a) and (g) to be equiv
alent. It is of value to examine these same relationships in the frequency 
domain. 

Fourier transform of the sampled truncated waveform of Fig. 6.5(e) is 
obtained by convolving the frequency-domain impulse functions of Fig. 
6.5(c) and the [sin(f)]/f function illustrated in Fig. 6.5(d). This convolution 
is graphically illustrated in an expanded view in Fig. 6.6. Sampling of the 
resulting convolution at frequency intervals of liTo yields the impulses as 
illustrated in Fig. 6.6 and, equivalently, Fig. 6.5(g). These sample values 
represent the Fourier transform ofthe periodic time waveform of Fig. 6.5(g). 
Note that there is an impulse at zero frequency. This component represents 
the average value of the truncated waveform; because the truncated wave
form is not an even number of cycles, the average value is not expected to 
be zero. The remaining frequency-domain impulses occur because the zeros 
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Figure 6.S Discrete Fourier transform of a band-limited periodic waveform: the 
truncation interval is not equal to one period. 

of the [sin(f)]/! function are not coincident with each sample value as was 
the case in the previous example. 

This discrepancy between the continuous and discrete Fourier trans-



Sec. 6.4 Relationship Between the Discrete and Continuous Fourier Transform 103 

Figure 6.6 Expanded illustration of the convolution of Fig. 6.5(e); To = 3.5T1 • 

forms is probablY the one most often encountered and least understood by 
users of the discrete Fourier transform. The effect of truncation at other 
than a multiple of the period is to create a periodic function with sharp 
discontinuities, as illustrated in Fig. 6.5(g). Intuitively, we expect the intro
duction of these sharp changes in the time domain to result in additional 
frequency components in the frequency domain. Viewed in the frequency 
domain, time-domain truncation is equivalent to the convolution ofa [sin(f)]/ 
f function with the single impulse representing the original frequency func
tion H(f). Consequently, the frequency function is no longer a single im
pulse, but rather a continuous function of frequency with a local maximum 
centered at the original impulse and a series of other peaks that are termed 
side lobes . These sidelobes are responsible for the additional frequency com
ponents that occur after frequency-domain sampling. This effect is termed 
leakage and is inherent in the discrete Fourier transform because of the 
required time-domain truncation. Techniques for reducing leakage are ex
plored in Sec. 9.2. 

Finite-Duration Waveforms 

The preceding two examples have explored the relationship between 
the discrete and continuous Fourier transforms for band-limited periodic 
functions. Another class of functions of interest is that of finite duration, 
such as the function h(t) illustrated in Fig. 6.7. If h(t) is time-limited, its 
Fourier transform cannot be band-limited; sampling must result in aliasing. 
It is necessary to choose the sample interval T such that aliasing is reduced 
to an acceptable range. As illustrated in Fig. 6.7(c), the sample interval T 
was chosen too large and as a result there is significant aliasing. 

If the finite-length waveform is sampled and if N is chosen equal to 
the number of samples of the time-limited waveform, then it is not necessary 
to truncate in the time domain. Truncation is omitted and the Fourier trans
form of the time-sampled function [Fig. 6.7(c)] is multiplied by ~I(f), the 
frequency-domain sampling function. The time-domain equivalent to this 
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Figure 6.7 Discrete Fourier transform of a time-limited waveform. 

product is the convolution of the time functions shown in Figs. 6.7(c) and 
(d). The resulting waveform is periodic, where a period is defined by the N 
samples of the original function, and thus is a replica of the original function. 
The Fourier transform of this periodic function is the sampled function il
lustrated in Fig. 6.7(e). 

For this class of functions, if N is chosen equal to the number of samples 
of the finite-length function, then the only error is that introduced by aliasing. 
Errors introduced by aliasing are reduced by choosing the sample interval 
T sufficiently small. For this case, the discrete Fourier transform sample 
values agree (within a constant) reasonably well with samples of the con-
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tinuous Fourier transform. Unfortunately, there exist few applications of 
discrete Fourier transform for this class of functions. 

General Periodic Waveforms 

Figure 6.7 can also be used to illustrate the relationship between the 
discrete and continuous Fourier transform for periodic functions that are 
not band-limited. Assume that h(t), as illustrated in Fig. 6.7(a), is only one 
period of a periodic waveform. If this periodic waveform is sampled and 
truncated at exactly the period, then the resulting waveform is identical to 
the time waveform of Fig. 6.7(c). Instead of the continuous frequency func
tion, as illustrated in Fig. 6.7(c), the frequency transform is an infinite series 
of equidistant impulses separated by liTo, whose areas are given exactly by 
the continuous frequency function. Because the frequency-sampling func
tion AI(f), as illustrated in Fig. 6.7(d), is an infinite series of equidistant 
impulses separated by liTo, then the result is identical to those of Fig. 6.7(e). 
As before, the only error source is that of aliasing if the truncation function 
is chosen exactly equal to an integer multiple of the period. If the time
domain truncation is not equal to a period, then results as described pre
viously are to be expected. 

General Waveforms 

The most important class of functions are tho!le that are neither time
limited nor band-limited. An example of this class of functions is illustrated 
in Fig. 6.8(a). Sampling results in the aliased frequency function illustrated 
in Fig. 6.8(c). Time-domain truncation introduces rippling in the frequency 
domain of Fig. 6.8(e). Frequency sampling results in the Fourier transform 
pair illustrated in Fig. 6.8(g). The time-domain function of this pair is a 
periodic function, where the period is defined by the N points of the original 
function after sampling and truncation. The frequency-domain function of 
the pair is also a periodic function, where a period is defined by N points, 
whose values differ from the original frequency function by the errors in
troduced in aliasing and time-domain truncation. The aliasing error can be 
reduced to an acceptable level by decreasing the sample interval T. Pro
cedures for reducing time-domain truncation errors are addressed in Sec. 
9.2. 

Summary 

We have shown that if care is exercised, then there exist many appli
cations where the discrete Fourier transform can be employed to derive 
results essentially equivalent to the continuous Fourier transform. The most 
important concept to keep in mind is that the discrete Fourier transform 
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implies periodicity in both the time and frequency domains. If one remem
bers that the N sample values of the time-domain function represent one 
sample of a periodic function, then application of the discrete Fourier trans
form should result in few surprises. 

6.5 DISCRETE FOURIER TRANSFORM PROPERTIES 

Properties established for the Fourier transform in Chapter 3 can be extended 
to the discrete Fourier transform because we have shown that the discrete 
transform is a special case of the continous transform. Although we often 
use the continuous equivalents in our problem-solving thought process, it 
is the discrete properties that form the theoretical basis for applications of 
the FFT. We replace kT by k and n/NT by n for convenience of notation. 

Linearity 

If x(k) and y(k) have discrete Fourier transforms X(n) and Y(n) , re
spectively, then 

x(k) + y(k) ~ X(n) + Y(n) (6.25) 

The discrete Fourier transform pair of Eq. (6.25) follows directly from the 
discrete Fourier transform pair of Eq. (6.21). 

Symmetry 

If h(k) and H(n) are a discrete Fourier transform pair, then 

~ H(k) ~ h( -n) (6.26) 

The discrete Fourier transform pair of Eq. (6.26) is established by rewriting 
Eq. (6.17): 

1 N-J 

h( -k) = - ~ H(n)ei2-rrn(-k)/N 

N k=O 

and by interchanging the parameters k and n: 

1 N-J 

h(-n) = - ~ H(k)e-j2-rrnklN 

N n=O 

Time Shifting 

If h(k) is shifted by the integer i, then 

h(k - i) ~ H(n)e -j2-rrnilN 

(6.27) 

(6.28) 

(6.29) 
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To verify Eq. (6.29), substitute r = k - i into the inverse discrete Fourier 
transform: 

1 N-I 
her) = - L H(n)ej2'TTnrIN 

N n~O 

1 N-J 

h(k - i) = - L H(n)ej 2"TTn(k-i)IN 
N n~O 

Frequency Shifting 

1 N-J 

= - L [H(n)e -j21TniIN]ej21TnkIN 
N n~O 

(6.30) 

If H(n) is shifted by the integer i, then its inverse discrete Fourier 
transform is multiplied by ej2'TTiklN 

h(k)ej2'TTikIN ~ H(n - i) (6.31) 

This discrete Fourier transform pair is established by substituting r = 
n - i into the discrete Fourier transform 

N-I 
H(r) = L h(k)e -j2"TTrkIN 

k~O 

N-J 

H(n - i) = L h(k)e-j2'TT(n-OkIN 
k~O 

N-I 
L [h(k)ej2'TTikIN]e -j21TnkIN 
k~O 

Alternate Inversion Formula 

(6.32) 

The discrete inversion formula, Eq. (6.17), can also be written as 

h(k) =! L H * (n)e -j2'TTnkIN [
N-J J* 

N k~O 
(6.33) 

where * implies conjugation. To prove Eq. (6.33), we simply perform the 
indicated conjugation. Let H(n) = R(n) + jI(n); hence, H * (n) = R(n) -
jI(n) and Eq. (6.33) becomes 

h(k) = ! L [R(n) - jI(n)]e -j2'TTnkIN [ N-I J* 
N n~O 

1 - . 2-rrnk.. 2-rrnk 
[ N J [ (JJ* = N n~o [R(n) - jI(n)] cos (N) -Jsm N) 
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1 [N - ] (2Tink) . (27'ink) 
= N n~o RCn) cos N - l(n)sm N 

. N - J • (27'ink) (27'ink) ] * 
- J n~o R(n) sm N + len) cos N 

1 [N-J (27'ink) . (27'ink) = N n~o R(n) cos N - len) sm N 

. N-J . (27'ink) (27'ink) ] + J n~o RCn) sm N + lCn) cos N 

1 N - ] . [ (27'ink) .. (27'ink) ] 
= N n~o [RCn) + JlCn)] cos N + J sm N 

1 N-] 

= - L H(n)eJ27rnkIN 
N n=O 
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(6.34) 

The significance of the alternate inversion formula is that the discrete 
transform, Eq. (6.34), can be used to compute both the Fourier transform 
and its inversion. Hence, one only needs to develop a single FFT computer 
program. 

Even Functions 

If heCk) is an even function, then heCk) = he( - k) and the discrete 
Fourier transform of heCk) is an even function and is real: 

N-J (2 k) 
heCk) ~ ReCn) = n~o heCk) cos ;; C6.35) 

To verify Eq. (6.35), we simply manipulate the defining relationships: 
N-J 

HeCn) = L he(k)e-J27rnkIN 
k=O 

N-J (2 k) k~O heCk) cos ;; 

N-J (2 k) k~O heCk) cos ;; 

= Re(n) 

N-J (2 k) 
+ j k~O heCk) sin ;; 

(6.36) 

The imaginary summation is zero because the summation is over an even 
number of cycles of an odd function. Because heCk) cos(27'inkIN) = heCk) 
{cos[27'iC - n)kIN]}, then He(n) = He( - n) and the frequency function is even. 
The inversion formula is proven similarly. Hence, if H(n) is given as a real 
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and even function, then its inverse discrete Fourier transform is an even 
function. 

Odd Functions 

If hoek) = - hoe - k), then hoek) is an odd function and its discrete 
Fourier transform is an odd and imaginary function: 

N-) 

Ho(n) = L ho(k)e -j2-rrnkIN 

k=O 

N-) (2 k) k~O hoek) cos ;:; 
N-) (2 k) 

- j k~O hoek) sin ;:; 

• N~) h (k) . (2-rrnk) = -j ~ 0 sm-N 
k=O 

= j1o(n) 

(6.37) 

The real summation is zero because summation is over an even number of 
cycles of an odd function. For H(n) given as an odd and imaginary function, 
the proof that hoek) is an odd function is established similarly; therefore, 

N-) (2 k) 
hoek) ~ j1o(n) = - j k~O hoek) sin ;:; (6.38) 

Waveform Decomposition 

To decompose an arbitrary function h(k) into an even and an odd func
tion, we simply add and subtract the common function h( - k)/2. 

h(k) = h(k) + h(k) 
2 2 

= [h~k) + h(; k) ] + [h~k) _ h(; k) ] (6.39) 

= heCk) + hoek) 

The terms in brackets satisfy the definition of an even and an odd function, 
respectively. Because h(k) is periodic with period N, then 

and 

h(-k) = heN - k) 

heCk) = h~k) + heN 2- k) 

h (k) = h(k) _ heN - k) 
0 22 

(6.40) 

(6.41) 



Sec. 6.5 Discrete Fourier Transform Properties 111 

For discrete periodic functions, Eq. (6.41) is the desired relationship 
for decomposition. From Eqs. (6.35) and (6.38), the discrete Fourier trans
form of Eq. (6.39) is 

H(n) = R(n) + jl(n) = He(n) + Ho(n) (6.42) 

where 

HAn) = R(n) and Ho(n) = jl(n) (6.43) 

Complex Time Functions 

If h(k) = hr(k) + jhi(k), where hAk) and hiCk) are, respectively, the 
real and imaginary parts ofthe complex time function h(k), then the discrete 
Fourier transform becomes 

N-) 

H(n) = L [hr(k) + jhi(k)]e -j2-rrnkIN 

N - 1 (2-rrnk) . (2-rrnk) k~O hr(k) cos N + hiCk) SIn N (6.44) 

.[ N-) • (2-rrnk) (2'ITnk) ] 
- ] k~O hr(k) SIn N - hiCk) cos N 

The first expression of Eq. (6.44) is R(n), the real part of the discrete trans
form, and the latter expression is len), the imaginary part of the discrete 
transform. If h(k) is real, then h(k) = hr(k), and from Eq. (6.44), 

N-) (2 k) 
RAn) = k~O hr(k) cos ;; (6.45) 

lo(n) = - j ~~ hr(k) sin C;;k) (6.46) 

Note that cos(2-rrnkIN) = cos( - 2-rrnkl N); thus, Re(n) = Re( - n), and Re(n) 
is an even function. Similarly, lo(n) = - lo( - n) and lo(n) is an odd function. 

For h(k) purely imaginary, h(k) = jhi(k) and from Eq. (6.44), 

N-) (2 k) 
RoCn) = k~O hiCk) sin ;; (6.47) 

N-) (2 k) 
leCn) = k~O hiCk) cos ;; (6.48) 

For h(k) imaginary, the real part of its transform is odd and the imaginary 
part of its transform is even. 
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Time-Convolution Theorem 

Discrete convolution is defined by the summation (see Chapter 7): 
N-\ 

y(k) = ~ x(i)h(k - i) (6.49) 
;=0 

where x(k), h(k), and y(k) are periodic functions with period N. 
Analogous to Fourier transform theory, one of the most important 

properties of the discrete Fourier transform is exhibited by the discrete Four
ier transform of Eq. (6.49). Discrete Fourier transformation yields the dis
crete convolution theorem that is expressed as 

N-\ 

~ x(i)h(k - i) ~ X(n)H(n) (6.50) 
;=0 

To establish this result, substitute Eq. (6.17) into the left-hand side of Eq. 
(6.50): 

N-\ N-\ 1 N-\ .. 

~ x(i)h(k - i) = ~ N ~ X(n)eJ2-rrnlIN 

;=0 ;=0 n=O 

1 N-\ 

X - ~ H(m)ej2-rrm(k-;)IN 

N m=O 

1 N-\N-\ 

= - ~ ~ X(n)H(m)ej2-rrmkIN 

N n=O m=O 

x ! [N~\ ej2-rr;nINe - j 2-rr;mIN] 

N ;=0 

(6.51) 

The bracketed term of Eq. (6.51) is simply the orthogonality relationship of 
Eq. (6.19) and is equal to N if m = n; therefore, 

N-\ 1 N-\ . 

~ x(i)h(k - i) = - ~ X(n)H(n)eJ 2-rrnkIN (6.52) 
;=0 N n=O 

Thus, the discrete Fourier transform of the convolution of two periodic sam
pled functions with period N is equal to the product of the discrete Fourier 
transform of the periodic functions. 

Frequency-Convolution Theorem 

Consider the frequency convolution: 
N-\ 

yen) = ~ X(i)H(n - i) (6.53) 
;=0 



Sec. 6.5 Discrete Fourier Transform Properties 113 

We can establish the frequency-convolution theorem by substitution into 
Eq. (6.53): 

[
N-] ] 

X k~O h( k)e - j2-rrk(n - OIN 

N-] N-] 
(6.54) 

= ~ ~ x(m)h(k)e- j2-rrknIN 

m=O k=O 

X [ N,,~=-O] ] £oJ e -j2-rrmiiN ej2-rrkiiN 

The bracketed term of Eq. (6.54) is the orthogonality relationship of Eq. 
(6.19) and is equal to N if m = k; therefore, 

N-] N-] 

~ X(i)H(n - i) = N ~ x(k)h(k)e -j2-rrnkIN (6.55) 
;=0 k=O 

and the discrete transform pair is established: 

1 N-] 

x(k)h(k) ~ N ~ X(i)H(n - i) 
;=0 

(6.56) 

Correlation Theorem 

Discrete correlation is defined as 

N-] 

z(k) = ~ x(i)h(k + i) (6.57) 
;=0 

where x(k), h(k), and z(k) are periodic functions with period N. 
The transform pair 

N-] 

~ x(i)h(k + i) ~ X * (n)H(n) (6.58) 
i=O 

is termed the discrete correlation theorem. By means of the correlation 
theorem, correlation can be determined equivalently in the transform do
main. To verify this relationship, substitute the discrete Fourier transform 



Fourier Transform 

x(t) + y(t) 0> X(f) + Y(f) 

H(t) 0> h(-f) 

h(t - to) 0> H(f)e- j2-rrfto 

h(tkj2-rrtfo 0> H(f - fo) 

[1-00

00 H*(f)e -j2-rrft df r 
he(t) 0> Re(f) 

ho(t) 0> j1o(f) 

h(t) = he(t) + ho(t) 

[h~) + h(~t)] 

+ [h~) _ h(~t)] 

y(t) = 1-00

00 x(T)h(t - T)dT 

= x(t) * h(t) 

y(t) * h(t) 0> Y(f)H(f) 

z(t) = 1-00

00 x(T)h(t + T) dT 

y(t)h(t) 0> Y(f) * H(f) 

1-00

00 h 2(t) dt = roo 1 H(f) 12 df 

TABLE 6.1 Continuous and Discrete Fourier Transform Properties 

Property Discrete Fourier Transform ..... .... 
(3.2) Linearity (6.25) x(k) + y(k) 0> X(n) + Y(n) 

(3.6) Symmetry (6.26) ~(k) 0> h( - n) 

(3.21) Time shifting (6.29) h(k - i) 0> H(n)e -j2-rrniiN 

(3.23) Frequency shifting (6.31) h(k)~2-rrkiIN 0> H(n - i) 

(3.25) Alternate inversion formula (6.33) [1. Nil H * (n)e- j2-rrknIN r 
N n~O 

(3.27) Even functions (6.35) he(k) 0> Re(n) 

(3.32) Odd functions (6.38) ho(k) 0> j1o(n) 
(3.33) Decomposition (6.39) h(k) = he(k) + ho(k) 

[h~k) + h(N 2- k)] 
--I 
:::T 

+ [hik) _ h(N 2- k)] 
CD 

0 
Cii" 
0 

N-I 
(il 

(4.1) Convolution (6.49) y(k) = ~ x(i)h(k - i) = x(k) * h(k) 
CD 
"T1 

i=O 0 
c: 
~ 

(4.14) Time convolution theorem (6.50) y(k) * h(k) 0> Y(n)H(n) 
~. 

--I 

N-I iil 
:::l 

(4.21) Correlation (6.57) y(k) = ~ x(i)h(k + I) CJ> 

0' 
i=O 3 

(4.20) Frequency convolution theorem (6.56) y(k)h(k) 0> 1. Y(n) * H(n) 
N () 

:::T 

Parseval's Theorem N-I 1 N-I II> 
"? 

~ h 2(k) = - ~ 1 H(n) 12 en k~O N n~O 
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into the left-hand side of Eq. (6.58): 
N-J 

~ x(i)h( k + i) 
i=O 

N-J [1 N-J ] 
~ _ ~ X(n)ej2TrinIN 

i=O N n=O 

1 N-J 

X - ~ H(m)ej2Trm(k+i)IN 

N m=O 

N-J [1 N-J J* 
~ - ~ X* (n)e-j2TrinIN 

i=O N n=O 

[
IN-I ] 

X - ~ H(m)ej2Trm(k+i)IN 

N m=O 
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(6.59) 

where the alternate inversion formula, Eq. (6.33), has been utilized to in
troduce the conjugate of X(n). Note that the second conjugation indicated 
in Eq. (6.33) can be omitted if only real functions are considered. For this 
case, Eq. (6.59) can be rewritten as: 
N-I 

~ x(i)h(k + i) 
i=O 

(6.60) 
N-IN-I [IN-I ] 

= ~ n~o m~o X * (n)H(m)ej2TrmkIN N i~O e -j2TrinlN ~2Trim1N 

From the orthogonality relationship of Eq. (6.19), the bracketed term is equal 
to N if n = m. Hence, Eq. (6.60) becomes 

N-I 1 N-I 

~ x(i)h(k + i) = - ~ X * (n)H(n)eJ2TrnkIN (6.61) 
i=O N n=O 

Summary Table of Discrete Fourier Transform 
Properties 

For future reference, the discrete Fourier transform properties are sum
marized in Table 6.1. The continuous Fourier transform properties are also 
tabled for purposes of comparison. Appropriate equation numbers are listed 
in order that one can easily locate the continuous or discrete development 
for each property. 

PROBLEMS 

6.1. Repeat the graphical development of Fig. 6.1 for the following functions: 
(a) h(t) = I tie - alII 

(b) h(t) = 1 - I t I 
= 0 

(c) h(t) = cos t 

I t I :5 1 
I t I> 1 
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6.2. Retrace the development of the discrete Fourier transform [Eqs. (6.1) through 
(6.16)]. Write all steps of the derivation in detail. 

6.3. Repeat the graphical derivation of Fig. 6.3 for h(t) = sin(2'lTfot). Show the 
effect of setting the truncation interval unequal to the period. What is the result 
of setting the truncation interval equal to two periods? 

6.4. Consider Fig. 6.7. Assume that h(t)Ao(t) is represented by N nonzero samples. 
What is the effect of truncating h(t)Ao(t) so that only 3NI4 nonzero samples 
are considered? What is the effect of truncating h(t)Ao(t) so that the N nonzero 
samples and NI4 zero samples are considered? 

6.5. Repeat the graphical derivation of Fig. 6.7 for h(t) L e-alt-nTol. What 
n= -00 

are the error sources? 

6.6. To establish the concept of rippling, perform the following graphical 
convolutions: 
(a) An impulse with (sin I)lt. 
(b) A narrow pulse with (sin t)ft. 
(c) A wide pulse with (sin I)lt. 
(d) A single triangular waveform with (sin t)lt. 

6.7. Write several terms of Eq. (6.19) to establish the orthogonality relationship. 

6.8. The truncation interval is termed the record length. In terms of the record 
length, write an equation defining the resolution or frequency spacing of the 
frequency-domain samples of the discrete Fourier transform. 

6.9. Comment on the following: The discrete Fourier transform is analogous to a 
bank of band-pass filters. 

Let x(k) and y(k) be discrete periodic functions: 

x(k) ~ {l k = 0,4 
k = 1,2,3 
k = 5, 6, 7 

x(k + 8r) = x(k) r = 0, ± 1, ±2, ... 
y(k) = x(k) 

y(k + 8r) = y(k) r = 0, ± 1, ±2, ... 

6.10. Compute X(n) and Y(n). Add these results to determine [X(n) + Y(n)]. De
termine z(k) = x(k) + y(k). Compute Z(n). Discuss your results in terms of 
the linearity property. 

6.11. Demonstrate the symmetry property of Eq. (6.26) for x(k). 

6.12. Compute the discrete Fourier transform of x(k - 3). Compare results with 
those obtained from the time-shifting relationship of Eq. (6.29). 

6.13. Compute the inverse discrete Fourier transform of X(n - 1). Repeat this com
putation by applying the frequency-shifting theorem ofEq. (6.31) and compare 
results. 

6.14. Compute the inverse discrete Fourier transform of X(n) using the alternate 
inversion formula of Eq. (6.33). 

6.15. Compute the discrete Fourier transform of x(k - 2). Investigate the even-odd 
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relationship of x(k - 2) and the real-imaginary relationship of its discrete 
transform. 

6.16. Let z(k) = x(k) - y(k - 4). Compute the discrete Fourier transform of z(k). 

6.17. Let z(k) = y(k) + y(k - 2) - x(k - 4). Decompose z(k) into even and odd 
functions both analytically and graphically. Demonstrate Eq. (6.42) with z(k). 

6.18. Demonstrate the frequency convolution theorem using x(k) and y(k). 

6.19. Demonstrate the discrete correlation theorem using x(k) and y(k). 
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7 

DISCRETE CONVOLUTION 

AND CORRELATION 

Possibly the most important discrete Fourier transform properties are those 
of convolution and correlation. This follows because the importance of the 
fast Fourier transform is primarily a result of its efficiency in computing 
discrete convolution or correlation. In this chapter, we examine, analytically 
and graphically, the discrete convolution and correlation equations. The 
relationship between discrete and continuous convolution is also explored 
in detail. 

7.1 DISCRETE CONVOLUTION 

Discrete convolution is defined by the summation: 
N-\ 

y(kT) = L x(iT)h[(k - on 
;=0 

where both x(kT) and h(kT) are periodic functions with period N, 

x(kT) = x[(k + rN)T] 

h(kT) = h[(k + rN)T] 

r = 0, ± 1, ± 2, .. . 

r = 0, ± 1, ± 2, .. . 

(7.1) 

(7.2) 

For convenience of notation, discrete convolution is normally written as 

y(kT) = x(kT) * h(kT) (7.3) 

To examine the discrete convolution equation, consider the illustra
tions of Fig. 7.1. Both functions x(kT) and h(kT) are periodic with period 
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x(kT) 

o T 2T 3T 4T 

(a) 

kT 

hlkT) 

o T 

(b) 

Figure 7.1 Example sampled waveforms to be convolved discretely. 
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kT 

N = 4. From Eq. (7.1), functions x(iT) and h[(k - i)T] are required. Function 
h( - iT) is the image of hUT) about the ordinate axis, as illustrated in Fig. 
7.2(a); function h[(k - i)T] is simply the function h( - iT) shifted by the 
amount kT. Figure 7.2(b) illustrates h[(k - on for the shift 2T. Equation 
(7.1) is evaluated for each kT shift by performing the required multiplications 
and additions. 

hI-iT) h[(2-i)T) 

T 2T 3T 4T iT 

(I) Ib) 

Figure 7.2 Graphical description of discrete convolution shifting operation. 

7.2 GRAPHICAL INTERPRETATION OF DISCRETE 
CONVOLUTION 

iT 

The discrete convolution process is illustrated graphically in Fig. 7.3. Sample 
values of x(kT) and h(kT) are denoted by dots and crosses, respectively. 
Figure 7.3(a) illustrates the desired computation for k = O. The value of 
each dot is multiplied by the value of the cross that occurs at the same 
abscissa value; these products are summed over the N = 4 discrete values 
indicated. Computation of Eq. (7.1) is graphically evaluated for k = 1 in 
Fig. 7.3(b); multiplication and summation is over the N points indicated. 
Figures 7.3(c) and (d) illustrate the convolution computation for k = 2 and 
k = 3, respectively. Note that for k = 4 [Fig. 7.3(e)], the terms multiplied 
and summed are identical to those of Fig. 7.3(a). This is expected because 
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h(·iTI 

iT 

iT 

iT 

iT 

iT 

·3T ·2T ·T T 2T 3T 4T 5T 6T kT 
(hI 

Figure 7.3 Graphical illustration of discrete convolution. 
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both x(kT) and h(kT) are periodic with a period of four terms. Therefore, 

y(kD = y[(k + rN)T] r = 0, ± 1, ± 2, ... (7.4) 

Steps for graphically computing the discrete convolution differ from 
those of continuous convolution only in that integration is replaced by sum
mation. For discrete convolution, these steps are (1) folding, (2) displace
ment or shifting, (3) multiplication, and (4) summation. As in the convolution 
of continuous functions, either the sequence x(kT) or h(kD can be selected 
for displacement. Equation (7.1) can be written equivalently as 

N-] 

y(kT) = 2: x[(k - i)T]hUD 
i~O 

7.3 RELATIONSHIP BETWEEN DISCRETE 
AND CONTINUOUS CONVOLUTION 

(7.5) 

If we only consider periodic functions represented by equally spaced impulse 
functions, discrete convolution relates identically to its continuous equiv
alent. This follows because, as we show in Appendix A (Eq. A.14), contin
uous convolution is well-defined for impulse functions. 

The most important application of discrete convolution is not to sam
pled periodic functions but rather to approximate the continuous convolu
tions of general waveforms. For this reason, we will now explore in detail 
the relationship between discrete and continuous convolution. 

Discrete Convolution of Finite-Duration Waveforms 

Consider the functions x(t) and h(t), as illustrated in Fig. 7.4(a). We 
wish to convolve these two functions both continuously and discretely and 
to compare these results. Continuous convolution yet) of the two functions 
is also shown in Fig. 7.4(a). To evaluate the discrete convolution, we sample 
both x(t) and h(t) with sample interval T and we assume that both sample 
functions are periodic with period N. As illustrated in Fig. 7.4(b), the period 
has been chosen as N = 9 and both x(kD and h(kD are represented by P 
= Q = 6 samples; the remaining samples defining a period are set to zero. 
Figure 7.4(b) also illustrates the discrete convolution y(kD for the period N 
= 9; for this choice of N, the discrete convolution is a very poor approxi
mation of the continuous case because the periodicity constraint results in 
an overlap of the desired periodic output. That is, we did not choose the 
period sufficiently large so that the convolution result of one period would 
not interfere or overlap the convolution result of the succeeding period. It 
is obvious that if we wish the discrete convolution to approximate continuous 
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Figure 7.4 Relationship between discrete and continuous convolution: finite-du
ration waveforms. 

convolution, then it is necessary that the period be chosen so that there is 
no overlap. 

Choose the period according to the relationship 

N=P+Q-l 

This situation is illustrated in Fig. 7.4(c), where N 

(7.6) 

P + Q - 1 = 11. 
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Note that for this choice of N there is no overlap in the resulting convolution. 
Equation (7.6) is based on the fact that the convolution of a function rep
resented by P samples and a function represented by Q samples is a function 
described by P + Q - 1 samples. 

There is no advantage in choosing N > P + Q - 1; as shown in Fig. 
7.4(d), for N = 15, the nonzero values of the discrete convolution are iden
tical to those of Fig. 7.4(c). As long as N is chosen according to Eq. (7.6), 
discrete convolution results in a periodic function, where each period ap
proximates the continuous convolution results. 

Figure 7.4( c) illustrates the fact that discrete convolution results are 
scaled differently than that of continuous convolution. This scaling constant 
is T; modifying the discrete convolution Eq. (7.1), we obtain 

N-\ 

y(kn = T L x(inh[(k - i)T] (7.7) 
;=0 

The relationship of Eq. (7.7) is simply the continuous convolution integral 
for time-limited functions evaluated by rectangular integration. Thus, for 
finite-length time functions, discrete convolution approximates continuous 
convolution within the error introduced by rectangular integration. As il
lustrated in Fig. 7.4(e), if the sample interval T is made sufficiently small, 
then the error introduced by the discrete convolution Eq. (7.7) is negligible. 

Example 7.1 Circular Convolution 

Discrete convolution yields periodic results because of the periodicity of the func
tions being convolved. This periodicity gives rise to what is commonly called circular 
convolution. Figure 7.5 illustrates this concept. 

In Figure 7.5(a), we show two example discrete periodic waveforms to be 
convolved. For the shift k = 2, Fig. 7.5(b) illustrates the appropriate folding and 
shifting operations. Multiplication and addition over the N = 8 points of the period 
yield the convolution results for k = 2. An alternate way of displaying the discrete 
convolution of Fig. 7.5(b) for shift k = 2 is shown in Fig. 7.5(c). The rings represent 
one period of the two periodic functions; the inner ring is h(in and is the function 
being shifted. As illustrated, the function is set for a shift of k = 2. The outer ring 
corresponds to the function x(iT). Appropriate values to be multiplied are adjacent 
to each other. These mUltiplied results are then summed around the circle (i.e., over 
one period). 

The inner ring is turned for each shift of k. As the ring is turned, it returns to 
its original position every eight shifts. Hence, the same values will be computed. 
This corresponds to the periodic convolution results discussed previously. Figure 
7.5(c) can also be used to illustrate the problem of overlap. As the inner ring turns, 
there must be a sufficient number of zero values in the outer ring so that a convolution 
value is not computed, which is a function of both ends of the data used to form the 
outer ring. If sufficient zeros are appended to the nonzero sample values of each 
function to be convolved, then the finite-duration convolution result does not overlap 
with the following period. 
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Figure 7.5 Graphical illustration of circular convolution. 

Disr,rete Convolution of an Infinite- and a Finite
Duration Waveform 

The previous example considered the case for which both x(kD and 
h(kT) were of finite duration. Another case of interest is that where only 
one of the time functions to be convolved is finite. To explore the relationship 
of the discrete and continuous convolution for this case, consider the illus
trations of Fig. 7.6. As illustrated in Fig. 7.6(a), function h(t) is assumed to 
be of finite duration and x(t) of infinite duration; convolution of these two 
functions is shown in Fig. 7.6(b). Because the discrete convolution requires 
that both the sampled functions x(kD and h(kD be periodic, we obtain the 
illustrations of Fig. 7.6(c); period N has been chosen [Figs. 7.6(a) and (c)]. 
For x(kT) infinite in duration, the imposed periodicity introduces what is 
known as an end effect. 

Compare the discrete convolution of Fig. 7.6(d) and the continuous 
convolution [Fig. 7.6(b)]. As illustrated, the two results agree reasonably 
well, with the exception of the first Q - 1 samples of the discrete convo
lution. To establish this fact more clearly, consider the illustrations of Fig. 
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7.7. We show only one period of x(in and h[(5 - i)T]. To compute the 
discrete convolution, Eq. (7.1), for this shift, we multiply those samples of 
x(in and h[(5 - i)T] that occur at the same time [Fig. 7.7(a)] and add. The 
convolution result is a function of x(in at both ends of the period. Such a 
condition obviously has no meaningful interpretation in terms of the desired 
continuous convolution. Similar results are obtained for each shift value until 
the Q points of h(iT) are shifted by Q - 1, that is, the end effect exists until 
shift k = Q - 1. 

Note that the end effect does not occur at the right end of the N sample 
values; functions hUn for the shift k = N - 1 (therefore maximum shift) 
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and x(iT) are illustrated in Fig. 7.7(b). Multiplication ofthose values of x(iT) 
and h[(N - 1 - ;)11 that occur at the same time and subsequent addition 
yield the desired convolution; the result is only a function of the correct 
values of x(iT). 

If the sample interval T is chosen sufficiently small, then the discrete 
convolution for this example class of functions closely approximate the con
tinuous convolution except for the end effect. 

Summary 

We have emphasized the point that discrete convolution is defined only 
for periodic functions. However, as illustrated graphically, the implications 
of this requirement are negligible if at least one of the functions to be con-
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volved is of finite duration. For this case, discrete convolution is approxi
mately equivalent to continuous convolution where the differences in the 
two methods are due to rectangular integration and to the end effect. 

In general, it is impossible to discretely convolve two functions of 
infinite duration. 

The convolution waveform illustrated could have been computed 
equivalently by means of the convolution theorem. Recall that the discrete 
convolution of Eq. (7.1) was defined in such a manner that those functions 
being convolved were assumed to be periodic. The underlying reason for 
this assumption is to enable the discrete convolution theorem, Eq. (6.50), 
to hold. If we compute the discrete Fourier transform of each of the periodic 
sequences x(kD and h(kD, mUltiply the resulting transforms, and then com
pute the inverse discrete Fourier transform of this product, we obtain iden
tical results to those illustrated. As is discussed in Chapter 10, it is normally 
faster computationally to use the discrete Fourier transform to compute the 
discrete convolution if the FFT is employed. 

7.4 GRAPHICAL INTERPRETATION OF DISCRETE 
CORRELATION 

Discrete correlation is defined as 

N-J 

z(kD = L x(iDh[(k + i)T] 
;=0 

where x(kT), h(kD, and z(kD are periodic functions. 

z(kT) = z[(k + rN)T] 

x(kD = x[(k + rN)T] 

h(kT) = h[(k + rN)T] 

r = 0, ±1, ±2, .. . 

r = 0, ±1, ±2, .. . 

r = 0, ±1, ±2, .. . 

(7.8) 

(7.9) 

As in the continuous case, discrete correlation differs from convolution 
in that there is no folding operation. Hence, the remaining rules for dis
placement, multiplication, and summation are performed exactly as for the 
case of discrete convolution. 

To illustrate the process of discrete correlation or lagged products, as 
it sometimes is referred, consider Fig. 7.8. The discrete functions to be 
correlated are shown in Fig. 7.8(a). According to the rules for correlation, 
we shift, multiply, and sum, as illustrated in Figs. 7.8(b), (c), and (d), re
spectively. Compare with the results of Ex. 4.8. In Chapter to, we discuss 
the application of the FFT for efficient computation of Eq. (7.8). 
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Figure 7.8 Graphical illustration of discrete correlation. 
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7.1. Let 

and 

PROBLEMS 

x(kD = e- kT 

= 0 
= x[(k + rN)l1 

h(kT) = 1 
=0 
= h[(k + rN)l1 

k = 0, 1,2,3 
k = 4,5, ... ,N 
r = 0, ± 1, ± 2, ... 

k = 0, 1, 2 
k = 3,4, ... ,N 
r = 0, ± 1, ± 2, ... 
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With T = 1, graphically and analytically determine x(kD * h(kD. Choose N 
less than, equal to, and greater than Eq. (7.6). 

7.2. Consider the continuous functions x(t) and h(t), as illustrated in Fig. 4.14(a). 
Sample both functions with sample interval T = To/4 and assume both sample 
functions are periodic with period N. Choose N according to relationship of 
Eq. (7.6). Determine x(kD * h(kD both analytically and graphically. Inves
tigate the results of an incorrect choice of N. Compare results with continuous 
convolution results. 

7.3. Repeat Problem 7.2 for Figs. 4.14(b) and (c). 

7.4. Refer to Fig. 7.6. Let x(t) be defined as illustrated in Fig. 7.6(a). Function h(l) 
is given as 
(a) h(t) = 8(t) 

(b) h(t) = 8(1) + 8(1 - D 
(c) h(t) = 0 1 < 0 

I 
= I 0<1<2 

= 0 
I 
2<1<1 

3 
= I 1<1<2 

= 0 
3 

I> -
2 

Following Fig. 7.6, graphically determine the discrete convolution in each case. 
Compare the discrete and continuous convolution in each case. Investigate 
the end effect in each case. 

7.5. It is desired to discretely convolve a finite-duration and an infinite-duration 
waveform. Assume that a hardware device is to be used that is limited in 
capacity to N sample values of each function. Describe a procedure that allows 
one to perform successive N-point discrete convolutions and combine the two 
to eliminate the end effect. Demonstrate your concept by repeating the illus
trations of Fig. 7.6 for the case NT = 1.5. Successively apply the developed 
technique to determine the discrete convolution y(kT) for 0 ~ kT ~ 3. 
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7.6. Derive the discrete convolution theorem for the following: 
N-l 

(a) ~ h(iDx[(k - OT] 
i=O 
N-l 

(b) ~ h(;nh[(k - OT] 
;=0 

Chap. 7 

7.7. Let x(kT) and h(kn be defined by Problem 7.1. Determine the discrete cor
relation of Eq. (7.11) both analytically and graphically. What are the contraints 
on N? 

7.8. Repeat Problem 7.2 for discrete correlation. 

7.9. Repeat Problem 7.3 for discrete correlation. 
7.10. Repeat Problem 7.4 for discrete correlation. 
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THE FAST FOURIER 

TRANSFORM (FFT) 

Interpretation of fast Fourier transform results does not require a well
grounded education in the algorithm itself, but rather a thorough under
standing of the discrete Fourier transform. This follows from the fact that 
the FFT is simply an algorithm (i.e., a particular method of performing a 
series of computations) that can compute the discrete Fourier transform 
much more rapidly than other available algorithms. For this reason, our 
discussion of the FFT addresses only the computational aspect of the 
algorithm. 

A simple matrix-factoring example is used to intuitively justify the FFT 
algorithm. The factored matrices are alternatively represented by signal flow 
graphs. From these graphs, we construct the logic of an FFT computer 
program. Theoretical developments of various forms of the FFT algorithm 
are then presented. 

8.1 MATRIX FORMULATION 

Consider the discrete Fourier transform, Eq. (6.16): 
N-1 

X(n) = L xo(k)e -j27fnkIN 

k=O 
n = 0, 1, ... ,N - (8.1) 

where we have replaced kT by k and nl NT by n for convenience of notation. 
We note that Eq. (8.1) describes the computation of N equations. For ex-

131 
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ample, if N = 4 and if we let 

W = e- j2-rrIN (8.2) 

then Eq. (8.1) can be written as 

X(O) = xo(O)WO + xo(l)WO + xo(2)WO + xo(3)WO 

X(l) = xo(O)WO + xo(1)W I + xo(2)W2 + xo(3)W3 (8.3) 

X(2) = xo(O)WO + xo(l)W2 + xo(2)W4 + xo(3)W6 

X(3) = xo(O)WO + xo(l)W3 + xo(2)W6 + xo(3)W9 

Equations (8.3) can be more easily represented in matrix form: 

[~m] = [E: ~ 
X(3) WO W3 

(8.4) 

or more compactly as 

(8.5) 

We will denote a matrix by boldface italic type. 
Examination of Eq. (8.4) reveals that since Wand possibly xo(k) are 

complex, then N 2 complex multiplications and (N)(N - 1) complex addi
tions are necessary to perform the required matrix computation. The FFT 
owes its success to the fact that the algorithm reduces the number of mul
tiplications and additions required in the computation of Eq. (8.4). We will 
now discuss, on an intuitive level, how this reduction is accomplished. A 
proof of the FFT algorithm is delayed until Sec. 8.9. 

8.2 INTUITIVE DEVELOPMENT 

To illustrate the FFT algorithm, it is convenient to choose the number of 
sample points of xo(k) according to the relation N = 2'Y, where 'Y is an integer. 
Later developments remove this restriction. Recall that Eq. (8.4) results from 
the choice of N = 4 = 2'Y = 22; therefore, we can apply the FFT to the 
computation of Eq. (8.4). 

The first step in developing the FFT algorithm for this example is to 
rewrite Eq. (8.4) as 

[
X(O)] [1 X(1) _ 1 
X(2) - 1 
X(3) 1 

(8.6) 
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Matrix Eq. (8.6) was derived from Eq. (8.4) by using the relationship W nk 

= wnk mod(N). Recall that [nk mod(N)] is the remainder upon division of nk 
by N; hence if N = 4, n = 2, and k = 3, then 

(8.7) 

because 

wnk = W6 = exp [ ( - ~21T)(6) ] = exp[ - j31T] 
(8.8) 

= exp[ - j1T] = exp [ ( - ~21T)(2) ] = W 2 = W nk mod(N) 

The second step in the development is to factor the square matrix in 
Eq. (8.6) as follows: 

[
X(O)] [1 
X(2) _ 1 
X(1) - 0 
X(3) 0 

WO 0 
W2 0 
o 1 
o 1 

o ] [1 0 WO 0] [XO(O)] o 0 1 0 WO xo(1) 
WI 1 0 W2 0 xo(2) 
W 3 0 1 0 W 2 xo(3) 

(8.9) 

The method of factorization is based on the theory of the FFT algorithm 
developed in Sec. 8.9. For the present, it suffices to show that multiplication 
of the two square matrices of Eq. (8.9) yields the square matrix of Eq. (8.6) 
with the exception that rows 1 and 2 have been interchanged (the rows are 
numbered 0, 1, 2, and 3). Note that this interchange has been taken into 
account in Eq. (8.9) by rewriting the column vector X(n); let the row-inter
changed vector be denoted by 

X(n) = [~m] 
X(3) 

(8.10) 

Repeating, the reader should verify that Eq. (8.9) yields Eq. (8.6) with the 
interchanged rows as noted. This factorization is the key to the efficiency 
of the FFT algorithm. 

Having accepted the fact that Eq. (8.9) is correct, although the results 
are scrambled, one should then examine the number of multiplications re
quired to compute the equation. First, let 

(8.11) 

That is, column vector xl(k) is equal to the product of the two matrices on 
the right in Eq. (8.9). 
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Element x I (0) is computed by one complex multiplication and one com
plex addition (WO is not reduced to unity in order to develop a generalized 
result). 

(8.12) 

Element x I (1) is also determined by one complex multiplication and 
addition. Only one complex addition is required to compute x I (2). This fol
lows because WO = - W2; hence, 

X I (2) = xo(O) + W 2 xo(2) 

= xo(O) - WOxo(2) 
(8.13) 

where the complex multiplication WO xo(2) has already been computed in the 
determination of XI (0) [Eq. (8.12)]. By the same reasoning, XI (3) is computed 
by only one complex addition and no multiplications. The intermediate vec
tor x1(k) is then determined by four complex additions and two complex 
multiplications. 

Let us continue by completing the computation of Eq. (8.9) 

[~~~~] - ;~~~~ 
X(1) - x2(2) 
X(3) x2(3) 

1 
1 
o 
o 

WO 0 
W 2 0 
o 1 
o 1 

o 
o 

XI(O) 
XI(l) 

xl(2) 
xl(3) 

(8.14) 

Term X2(0) is determined by one complex multiplication and addition: 

(8.15) 

Element X2(1) is computed by one addition because WO = - W2. By similar 
reasoning, x2(2) is determined by one complex multiplication and addition, 
and x2(3) by only one addition. 

Computation of X(n) by means of Eq. (8.9) requires a total of four 
complex multiplications and eight complex additions. Computation of X(n) 
by (8.4) requires 16 complex multiplications and 12 complex additions. Note 
that the matrix-factorization process introduces zeros into the factored ma
trices and, as a result, reduces the required number of multiplications. For 
this example, the matrix-factorization process reduces the number of mul
tiplications by a factor oftwo. Because computation time is largely governed 
by the required number of multiplications, we see the reason for the effi
ciency of the FFT algorithm. 

For N = 2""1, the FFT algorithm is then simply a procedure for factoring 
an N x N matrix into -y matrices (each N x N), such that each of the 
factored matrices has the special property of minimizing the number of com
plex multiplications and additions. If we extend the results of the previous 
example, we note that the FFT requires N-y/2 = 4 complex multiplications 
and N-y = 8 complex additions, whereas the direct method [Eq. (8.4)] re-
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quires N 2 complex multiplications and N(N - 1) complex additions. If we 
assume that computing time is proportional to the number of multiplications, 
then the approximate ratio of direct to FFT computing time is given by 

N 2 2N 
Ny/2 = -:; (8.16) 

which for N = 1024 = 210 is a computational reduction of more than 200 
to 1. Figure 8.1 illustrates the relationship between the number of mUltipli
cations required using the FFT algorithm compared with the number of 
mUltiplications using the direct method. 

The matrix-factoring procedure does introduce one discrepancy. Recall 
that the computation of Eq. (8.9) yields X(n) instead of X(n); that is, 

[
X(O)] [X(O)] 

- X(2). X(1) 
X(n) = X(1) Instead of X(n) = X(2) 

X(3) X(3) 

(8.17) 

This rearrangement is inherent in the matrix-factoring process and is a minor 
problem because it is straightforward to generalize a technique for unscram
bling X(n) to obtain X(n). 
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Figure 8.1 Comparison of multiplications required by direct calculation and FFT algorithm. 
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Rewrite X(n) by replacing argument n with its binary equivalent: 

[~~~~] becomes [~~~~~] (8.18) 
X(1) X(Ol) 
X(3) X(1l) 

Observe that if the binary arguments of Eq. (8.18) arefiipped or bit-reversed 
(i.e., 01 becomes 10, 10 becomes 01, etc.), then 

X(n) = [~1~l] flips to [~1~l] = X(n) (8.19) 

X(1l) X(11) 

It is straightforward to develop a generalized result for unscrambling the 
FFT. 

For N greater than 4, it is cumbersome to describe the matrix-facto
rization process analogous to Eq. (8.9). For this reason, we interpret (8.9) 
in a graphical manner. Using this graphical formulation, we can describe 
sufficient generalities to develop a flow graph for a computer program. 

8.3 SIGNAL FLOW GRAPH 

We convert Eq. (8.9) into the signal flow granh illustrated in Fig. 8.2. As 
shown, we represent the data vector or array xo(k) by a vertical column of 
nodes on the left of the graph. The second vertical array of nodes is the 
vector xl(k) computed in Eq. (8.1l), and the next vertical array corresponds 
to the vector x2(k) = X(n) , Eq. (8.14). In general, there will be 'Y compu
tational arrays where N = 2"'1. 

The signal flow graph is interpreted as follows. Each node is entered 

COMPUTATION ARRAYS . 
, l 

Data Arrll'( Array 1 ArrIIV 2 
xO(k' x,(k' ~(Jd 

xO(O, _-------:f":::------:::; .. -~(O, 

--------Eq. (1-23' Eqs_ (1-30 to 1-33' Eqs_ (1-35 to 1-38' Figure 8.2 FFT signal flow graph, N = 4. 
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by two solid lines representing transmission paths from previous nodes. A 
path transmits or brings a quantity from a node in one array, multiplies the 
quantity by WP, and inputs the result into the node in the next array. Factor 
WP appears near the arrowhead of the transmission path; absence of this 
factor implies that WP = 1. Results entering a node from the two transmis
sion paths are combined additively. 

To illustrate the interpretation of the signal flow graph, consider node 

DATA 
ARRAY 

xolk) 
( I- 1 

xllk). 

COMPUTATION ARRAYS 
1 

1-2 1-3 
x2lk) x3M 

1-4 ' 
x4lk) 

'0(0) ~--------_"":----='-----""'_--:":""---_""'"""":"":"7---t_ "4(0) 

Figure 8.3 Example of dual nodes. 
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X I (2) in Fig. S.2. According to the rules for interpreting the signal flow graph, 

xl(2) = xo(O) + W2xo(2) (S.20) 

which is simply Eq. (S.13). Each node of the signal flow graph is expressed 
similarly. 

The signal flow graph is then a concise method for representing the 
computations required in the factored matrix FFT algorithm of Eq. (S.9). 
Each computational column of the graph corresponds to a factored matrix; 
'Y vertical arrays of N points each (N = 2'Y) are required. Utilization of this 
graphical presentation allows us to easily describe the matrix-factoring pro
cess for large N. 

We show in Fig. S.3 the signal flow graph for N = 16. With a flow 
graph of this size, it is possible to develop general properties concerning the 
matrix-factorization process and thus provide a framework for developing 
a FFT computer program flowchart. 

8.4 DUAL NODES 

Inspection of Fig. S.3 reveals that in every array we can always find two 
nodes whose input transmission paths stem from the same pair of nodes in 
the previous array. For example, nodes x I (0) and x I (S) are computed in 
terms of nodes xo(O) and xo(S). Note that nodes xo(O) and xo(S) do not enter 
into the computation of any other node. We define two such nodes as a dual
node pair. 

Because the computation of a dual-node pair is independent of other 
nodes, it is possible to perform in-place computation. To illustrate, note 
from Fig. S.3 that we can simultaneously compute XI(O) and XI(S) in terms 
of xo(O) and xo(S) and return the results to the storage locations previously 
occupied by xo(O) and xo(S). Storage requirements are then limited to the 
data array xo(k) only. As each array is computed, the results are returned 
to this array. 

Dual-Node Spacing 

Let us now investigate the spacing (measured vertically in terms of the 
index k) between a dual-node pair. The following discussion will refer to 
Fig. S.3. First, in array I = 1, a dual-node pair, say {XI (O),XI (S)}, is separated 
by k = S = N/21 = N/2 I . In array I = 2, a dual-node pair, say {X2(S),X2(12)}, 
is separated by k = 4 = N/21 = N/22. Similarly, a dual-node pair, 
{x3(4),x3(6)}, in array I = 3 is separated by k = 2 = N/21 = N123; and in 
array I = 4, a dual-node pair, {X4(S),X4(9)}, is separated by k = 1 = N/21 

= N124. 
Generalizing these results, we observe that the spacing between dual 

nodes in array I is given by N/21• Thus, if we consider a particular node 
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x/(k), then its dual node is x/(k + N/2/). This property allows us to easily 
identify a dual-node pair. 

Dual-Node Computation 

The computation of a dual-node pair requires only one complex mul
tiplication. To clarify this point, consider node x2(8) and its dual x2(12), as 

COMPUTATION ARRAYS 
1 

DATA 
ARRAY 

xO(k, 

1- 4 \ 

x4(k' 
_-----------._-=,-----__ -:-::-,---__ ..... -:::,--__. .. x4(0, 

/-2 1-3 
x2(k, x3(k. 

-------~~~~---~-.~-~~-~~~--~~SKIP 

'Of 141_-+--------------.......,-.!_~'I__----......... _ .... __:_:,.,.,..,~--__ __. .... ----__. .. x4( 14) 

Figure 8.4 Example of nodes to be skipped when computing a signal flow graph. 
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illustrated in Fig. 8.3. The transmission paths stemming from node XI (12) 
are multiplied by W 4 and WI2 prior to input at nodes x2(8) and x2(12), re
spectively. It is important to note that W4 = - W12 and that only one mul
tiplication is required because the same data X I (12) is to be multiplied by 
these terms. In general, if the weighting factor at one node is WP, then the 
weighting factor at the dual node is Wp+NI2. Because WP = - Wp+NI2, only 
one multiplication is required in the computation of a dual-node pair. The 
computation of any dual-node pair is given by the equation pair: 

xl(k) = Xl-I(k) + WPX1-I(k + N12/) (8.21) 
xl(k + N121) = Xl-I(k) - WPX1-1(k + N12/) 

In computing an array, we normally begin with node k 0 and se-
quentially work down the array, computing the equation pair of Eq. (8.21). 
As stated previously, the dual of any node in the Ith array is always down 
NI21 in the array. Because the spacing is N121, then it follows that we must 
skip after every NI21 node. To illustrate this point, consider array I = 2 in 
Fig. 8.4. If we begin with node k = 0, then according to our previous dis
cussions, the dual node is located at k = NI22 = 4, which can be verified 
by inspection of Fig. 8.4. Proceeding down this array, we note that the dual 
node is always located down by 4 in the array until we reach node 4. At this 
point, we have entered a set of nodes previously encountered, that is, these 
nodes are the duals for nodes k = 0, 1, 2, and 3. It is necessary to skip over 
nodes k = 4,5,6, and 7. Nodes 8, 9, 10, and 11 follow the original convention 
of the dual node being located 4 down in the array. In general, if we work 
from the top down in array I, then we will compute Eq. (8.21) for the first 
N/21 nodes, skip the next N12 /, etc. We know to stop skipping when we 
reach a node index greater than N - 1. 

8.5 Wl'DETERMINATION 

Based on the preceding discussions, we have defined the properties of each 
array with the exception of the value p in Eq. (8.21). The value of p is 
determined by (a) writing the index k in binary form with 'Y bits, (b) scaling 
or sliding this binary number 'Y - I bits to the right and filling in the newly 
opened bit position on the left with zeros, and (c) reversing the order of the 
bits. This bit-reversed number is the term p. 

To illustrate this procedure, refer to Fig. 8.4 and consider node x3(8). 
Because 'Y = 4, k = 8, and I = 3, then k in binary is 1000. We scale this 
number 'Y - I = 4 - 3 = 1 places to the right and fill in zeros; the result 
is 0100. We then reverse the order of the bits to yield 0010 or integer 2. The 
value of p is then 2. 

Let us now consider a procedure for implementing this bit-reversing 
operation. We know that a binary number, say a4a3a2a I', can be written 
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in base 10 as a4 x 23 + a3 x 22 + a2 x 21 + al x 2°. The bit-reversed 
number that we are trying to describe is given by a 1 x 23 + a2 x 22 + a3 
x 21 + a4 x 2°. If we describe a technique for determining the binary bits 
a4, a3, a2, and aI, then we have defined a bit-reversing operation. 

Now assume that M is a binary number equal to a4a3a2al·. Divide M 
by 2, truncate, and multiply the truncated results by 2. Then compute 
a4a3a2a I' - 2(a4a3a2·). If the bit a 1 is 0, then this difference is zero because 
division by 2, truncation, and subsequent multiplication by 2 does not alter 
M. However, if the bit al is 1, truncation changes the value of M and the 
above difference expression is nonzero. We observe that by this technique, 
we can determine if the bit a 1 is 0 or 1. 

We can identify the bit a2 in a similar manner. The appropriate dif
ference expression is a4a3a2' - 2(a4a3·). If this difference is zero, then a2 
is zero. Bits a3 and a4 are determined similarly. This procedure forms the 
basis for developing a bit-reversing computer routine in Sec. 8.7. 

8.6 UNSCRAMBLING THE FFT 

The final step in computing the FFT is to unscramble the results analogous 
to Eq. (8.19). Recall that the procedure for unscrambling the vector X(n) is 
to write n in binary and reverse or flip the binary number. We show in Fig. 
8.5 the results of this bit-reversing operation: terms x4(k) and x4(i) have 
simply been interchanged, where i is the integer obtained by bit-reversing 
the integer k. 

Note that a situation similar to the dual-node concept exists when we 
unscramble the output array. If we proceed down the array, interchanging 
x(k) with the appropriate xU), we eventually encounter a node that has pre
viously been interchanged. For example, in Fig. 8.5, node k = 0 remains 
in its location, nodes k = 1, 2, and 3 are interchanged with nodes 8, 4, and 
12, respectively. The next node to be considered is node 4, but this node 
was previously interchanged with node 2. To eliminate the possibility of 
considering a node that has previously been interchanged, we simply check 
to see if i (the integer obtained by bit-reversing k) is less than k. If so, this 
implies that the node has been interchanged by a previous operation. With 
this check, we can ensure a straightforward unscrambling procedure. 

8.7 FFT COMPUTATION FLOWCHART 

Using the discussed properties of the FFT signal flow graph, we can easily 
develop a flowchart for programming the algorithm on a digital computer. 
We know from the previous discussions that we first compute array I = 1 
by starting at node k = 0 and working down the array. At each node k, we 



142 The Fast Fourier Transform (FFT) Chap.S 

k x4(k.-X,,"' XIn. 

o x4(OOOO, ... -----------; ___ • X(oooo. 

X (00011 

2 X(0010' 

3 X(00111 

4 X(Ol00' 

5 X(01011 

6 X(0110' 

7 X(01111 

8 X(l000' 

9 X(l00ll 

10 X(1010) 

11 X(1011) 

12 X(ll00' 

13 X(1101) 

14 X(1110) 

15 x4(1111) ... -----------; .. _. X(llll) 

Figure 8.5 Example of the bit-reversing operation for N = 16. 

compute the equation pair of Eq. (8.21), where p is determined by the de
scribed procedure. We continue down the array computing the equation pair 
of Eq. (8.21) until we reach a region of nodes that must be skipped over. 
We skip over the appropriate nodes and continue until we have computed 
the entire array. We then proceed to compute the remaining arrays using 
the same procedures. Finally, we unscramble the final array to obtain the 
desired results. Figure li.6 illustrates a flowchart for computer programming 
the FFT algorithm. 
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START 

INPUT DATA 

Data: x(k). k = O. 1 ..... N-~ 1 

N = 2"1. "1 an integer. 
NU ="1 

INITIALIZATION 0 
- - - -'';''1----

N2 = N/2 
NU1='Y·l 

k = 

M = Integer value of (k/2NU 1) 0 
P = IBR(M) 

J2 = M/2 
IBR = 2·IBR + (M-2·J2) 

M=J2 

Figure 8.6 FFT computer program flowchart. 
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® 
1 = 1+ 1 

N2 = N2/2 
NUl = NU1·l 

k = 0 

Box 1 describes the necessary input data. Data vector xo(k) is assumed 
to be complex and is indexed as k = 0, 1, ... , N - 1. If xo(k) is real, then 
the imaginary part should be set to zero. The num.ber of sample points N 
must satisfy the relationship N = 2'Y, where "y is integer valued. 
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Initialization of the various program parameters is accomplished in Box 
2. Parameter I is the array number being considered. We start with array I 
= 1. The spacing between dual nodes is given by the parameter N2; for 
array I = 1, N2 = NI2 and is initialized as such. Parameter NUl is the right 
shift required when determining the value ofp in Eq. (8.21); NUl is initialized 
to 'Y - 1. The index k of the array is initialized to k = 0; thus, we will work 
from the top and progress down the array. 

Box 3 checks to see if the array I to be computed is greater than 'Y. If 
yes, then the program branches to Box 13 to unscramble the computed 
results by bit inversion. If all arrays have not been computed, then we pro
ceed to Box 4. 

Box 4 sets a counter I = 1. This counter monitors the number of dual
node pairs that have been considered. Recall from Sec. 8.4 that it is necessary 
to skip certain nodes in order to ensure that previously considered nodes 
are not encountered a second time. Counter I is the control for determining 
when the program must skip. 

Boxes 5 and 6 perform the computation of Eq. (8.21). Because k and 
I have been initialized to 0 and 1, respectively, the initial node considered 
is the first node of the first array. To determine the factor p for this node, 
recall that we must first scale the binary number k to the right 'Y - I bits. 
To accomplish this, we compute the integer value of k/2-y-l = k/2NU1 and 
set the result to M as shown in Box 5. According to the procedure for 
determining p, we must bit reverse M, where M is represented by 'Y = NU 
bits. The function IBR(M) denoted in Box 5 is a special function routine for 
bit inversion; this routine is described later. 

Box 6 is the computation of Eq. (8.21). We compute the product WP 
x(k + N2) and assign the result to a temporary storage location. Next, we 
add and subtract this term according to Eq. (8.21). The result is the dual
node output. 

We then proceed down the array to the next node. As shown in Box 
7, k is incremented by 1. 

To avoid recomputing a dual node that has been considered previously, 
we check Box 8 to determine if the counter I is equal to N2. For array 1, 
the number of nodes that can be considered consecutively without skipping 
is equal to N 12 = N2. Box 8 determines this condition. If I is not equal to 
N2, then we proceed down the array and increment the counter I, as shown 
in Box 9. Recall that we have already incremented k in Box 7. Boxes 5 and 
6 are then repeated for the new value of k. 

If I = N2 in Box 8, then we know that we have reached a node pre
viously considered. We then skip N2 nodes by setting k = k + N2. Because 
k has already been incremented by 1 in Box 7, it is sufficient to skip the 
previously considered nodes by incrementing k by N2. 

Before we perform the required computations indicated by Boxes 5 
and 6 for the new node k = k + N2, we must first check to see that we 
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have not exceeded the array size. As shown in Box 11, if k is less than N 
- 1 (recall k is indexed from 0 to N - 1), then we reset the counter I to 1 
in Box 4 and repeat Boxes 5 and 6. 

If k > N - 1 in Box 11, we know that we must proceed to the next 
array. Hence, as shown in Box 12, I is indexed by 1. The new spacing N2 
is simply N2/2 (recall the spacing is NI2 l ). NUl is decremented by 1 (NUl 
is equal to 'Y - I), and k is reset to zero. We then check Box 3 to see if all 
arrays have been computed. If so, then we proceed to unscramble the final 
results. This operation is performed by Boxes 13 through 17. 

Box 13 bit-reverses the integer k to obtain the integer i. Again we use 
the bit-reversing function IBR(k), which is explained later. Recall that to 
unscramble the FFT, we simply interchange x(k) and xU). This manipulation 
is performed by the operations indicated in Box 15. However, before Box 
15 is entered, it is necessary to determine, as shown in Box 14, if i is less 
than or equal to k. This step is necessary to prohibit the altering of previously 
unscrambled nodes. 

Box 16 determines when all nodes have been unscrambled and Box 17 
is simply an index for k. 

In Box 18, we describe the logic of the bit-reversing function IBR(k). 
We have implemented the bit-reversing procedure discussed in Sec. 8.5. 

When one proceeds to implement the flow graph of Fig. 8.6 into a 
computer program, it is necessary to consider the variables x(k) and WP as 
complex numbers and they must be handled accordingly. 

S.S FFT BASIC AND PASCAL COMPUTER PROGRAMS 

A listing of a BASIC program based on the FFT algorithm flowchart in Fig. 
8.6 is shown in Fig. 8.7. The program does not attempt to accomplish the 
utlimate in efficiency but rather is designed to acquaint the reader with the 
computer programming procedure of the FFT algorithm. Efficient program
ming results in a slight increase in computing speed. 

The inputs to the FFT program are XREAL(N%), the real part of the 
function to be discrete Fourier transformed; XIMAG(N%), the imaginary 
part; N%, the number of sample points; and NU%, where N% = 2NU%. 

10000 REM: 
10002 REM: 
10004 REM: 
10010 N2% = 
10020 NU1% = 
10030 K% = 0 
10040 FOR L% 

FFT SUBROUTINE- THE CALLING PROGRAM SHOULD 
DIMENSION XREAL( 1%) AND XIMAG( 1%). 
N% AND NU% MUST BE INITIALIZED. 

NV2 
NU% - 1 

= 1 TO NU% STEP 1 

Figure 8.7 FFT BASIC computer subroutine. 
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10050 
10060 
10070 
10080 
10090 
10100 
10110 
10120 
10130 
10140 
10150 
10160 
10170 
10180 
10190 
10200 
10210 
10220 
10230 
10240 
10250 
10260 
10270 
10280 
10290 
10300 
10310 
10320 
10330 
10340 
10350 
10360 
10370 
10380 
10390 
10400 
10410 
10420 
10430 
10440 
10450 
10460 
10470 
10480 
10490 
10500 
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FOR I~ = 1 TO N2~ STEP 
J~ = K~\2ANU1~ 

GOSUB 10410 
ARG = 6.283185# * IBITR~/N~ 

C = COS(ARG) 
S = SIN(ARG) 
K1% K~ + 1 
K1N2~ = K1~ + N2~ 

TREAL = XREAL(K1N2~) * C + XIMAG(K1N2~)*S 
TIMAG = XIMAG(K1N2~) * C - XREAL(K1N2~) * S 
XREAL(K1N2~) = XREAL(K1~) - TREAL 
XIMAG(K1N2~) = XIMAG(K1~) - TIMAG 
XREAL(K1~) = XREAL(K1~) + TREAL 
XIMAG(K1~) = XIMAG(K1~) + TIMAG 
K~ = K~ + 1 

NEXT I~ 

K~ = K~ + N2~ 
IF K~<N~ GOTO 10050 
K~ = 0 
NU1% = NU1% -1 
N2~ = N2~ / 2 

NEXT L~ 

FOR K~ = 1 TO N~ STEP 
J~ = K~ - 1 
GOSUB 10410 
I~= IBITR~ + 1 
IF( I~<=K~) GaTO 10380 
TREAL = XREAL(K~) 
TIMAG = XIMAG(K~) 

NEXT K~ 
RETURN 
END 

XREAL(K~) XREAL(I%) 
XIMAG(K~) XIMAG( I~) 
XREAL( I~) TREAL 
XIMAG( I~) TIMAG 

REM: BIT REVERSAL SUB-ROUTINE 
J1% = J~ 
IBITR~ = 0 
FOR 11~ = 1 TO NU~ STEP 1 

J2~ = J1%\2 
IBITR~ = IBITR~*2 + (J1~ - 2*J2~) 

J1% = J2~ 
NEXT 11% 
RETURN 
END 

Figure 8.7 (continued) 



Sec. B.B FFT Basic and Pascal Computer Programs 147 

Upon completion, XREAL(N%) is the real part of the transform and 
XIMAG(N%) is the imaginary part ofthe transform. Input data is destroyed. 
Note that the backslash (\) implies integer division in BASIC. Integer division 
is required for the subroutine to operate correctly. Integer variables are 
specified by the percent symbol (%) and the pound symbol (#) denotes 
double precision. The program uses the convention that array indexing be
gins with 1. (Computing recipes throughout this book are more readily im
plemented if the complier permits the use of an array index of zero.) Because 
FFT computations are recursive, double-precision arithmetic may be 
required. 

In Fig. 8.8, we show a PASCAL program based on the flowchart of 
Fig. 8.6. Input and output variables are identical to those described for the 
BASIC program. 

TYPE REALARRAY=ARRAY[O .. 31] OF REAL; 

FUNCTION IBITR (J,NU: INTEGER): INTEGER; 
VAR I,J1,J2,K: INTEGER; 
BEGIN 

END; 

J 1 : = J; 
K 0; 
FOR I 
BEGIN 

J2 
K 
J1 

END; 
IBITR -

( IB ITR) 

1 TO NU DO 

J1 DIV 2' 
- K*2+(J1-2*J2) ; 
- J2 

K 

PROCEDURE FFT (VAR XREAL,XIMAG: REALARRAY; N,NU: INTEGER); 
VAR N2,NU1, I ,L,K,M: INTEGER; 

TREAL,TIMAG,P,ARG,C,S: REAL; 
LABEL LBL; 
BEGIN 

N2 := N DIV 2; 
NU1 : = NU-1; 
K := 0; 
FOR L := 1 TO NU DO 
BEGIN 

LBL: 
FOR := 1 TO N2 DO 
BEGIN 

M K DIV ROUND(EXP (NU1 * LN (2»); 
P I B I TR ( M , NU) ; 

Figure 8.8 FFT PASCAL computer subroutine. 
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END; 
FOR K 
BEGIN 

END 
END; {FFT} 

END; 

The Fast Fourier Transform (FFT) Chap. 8 

ARG := 6.283185*P/N; 
C : = COS (ARG); 
S : = SIN (ARG); 
TREAL := XREAL[K+N2]*C+XIMAG[K+N2]*S; 
TIMAG := XIMAG[K+N2]*C-XREAL[K+N2]*S; 
XREAL[K+N2] := XREAL[K]-TREAL; 
XIMAG[K+N2] := XIMAG[K]-TIMAG; 
XREAL[K] XREAL[K]+TREAL; 
XIMAG[K] XIMAG[K]+TIMAG; 
K := K+1 

K := K+N2; 
IF K<N THEN GOTO LBL; 

K := 0; 
NU1 : = NU1-1; 
N2 := N2 DIV 2 

o TO N-1 DO 

I : = I B I TR (K, NU) ; 
IF I>K THEN 
BEGIN 

TREAL XREAL[K]; 
TIMAG XIMAG[K]; 
XREAL[K] XREAL[I]; 
XIMAG[K] XIMAG[I]; 
XREAL[ I] .= TREAL; 
XIMAG[I] TIMAG 

END 

Figure 8.8 (continued) 

B.9 THEORETICAL DEVELOPMENT OF THE BASE-2 FFT 
ALGORITHM 

In Sec. 8.2, we used a matrix argument to develop an understanding of why 
the FFT is an efficient algorithm. We then constructed a signal flow graph 
that described the algorithm for any N = 2'1. In this section, we relate each 
of these developments to a theoretical basis. First, we will develop a theo
retical proof of the algorithm for the case N = 4. We then extend these 
arguments to the case N = 8. The reason for these developments for specific 
cases is to establish the notation that we use in the final derivation of the 
algorithm for the case N = 2'1, where 'Y is integer valued. 
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Definition of Notation 

Consider the discrete Fourier transform relationship of Eq. (8.1) 
N-I 

X(n) = ~ xo(k)Wnk n = 0, 1, ... , N - 1 (8.22) 
k=O 

where we have set W = e -)2",1 N. It is desirable to represent the integers n 
and k as binary numbers; that is, if we assume N = 4, then 'Y = 2 and we 
can represent k and n as two-bit binary numbers, 

'< = 0, 1, 2, 3 

n = 0, 1,2,3 

or 

or 

k = (k\,ko) = 00,01,10,11 

n = (n\,no) = 00,01, to, 11 

A compact method of writing k and n is 

k = 2k\ + ko n = 2n\ + no (8.23) 

where ko, k\, no, and n\ can take the values ofO and 1 only. Equation (8.23) 
is simply the method of writing a binary number as its base-to equivalent. 

Using the representation of Eq. (8.23), we can rewrite Eq. (8.22) for 
the case N = 4 as 

X(n \ ,no) = ~ ~ xo(k \ ,ko) w(2m + no)(2kl + ko) 
ko=O kl =0 

(8.24) 

Note that the single summation in Eq. (8.22) must now be replaced by 'Y 
summations in order to enumerate all the bits of the binary representation 
of k. 

Factorization of WP 

Now consider the W P term. Because W a+b = WaWb, then 
w(2nl +no)(2kl + ko) w(2m + no)2kl w(2m + no)ko 

[w4mkl] w2nokl w(2m + no)ko 

W2nok1 w(2m + no)ko 

Note that the term in brackets is equal to unity because 

W 4mk1 = [w4]mkl = [e -)2",4/4]nlkl = [l]nlkl 

Thus, Eq. (8.24) can be written in the form: 

X(n\,no) = ± [± xo(k\ ,ko)W2nokl] w(2nl+no)ko 
ko=O kl=O 

(8.25) 

(8.26) 

(8.27) 
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This equation represents the foundation of the FFT algorithm. To dem
onstrate this point, let us consider each of the summations of Eq. (8.27) 
individually. First, rewrite the summation in brackets as 

I 

xI(no,ko) = ~ XO(kl,ko)w2noJ<l 
kl~O 

Enumerating the equations represented by Eq. (8.28), we obtain 

XI(O,O) = xo(O,O) + xo(1,O)Wo 

XI(O,I) = xo(O,1) + xo(1,I)Wo 

x I (1,0) = xo(O,O) + xo(1 ,0) W 2 

XI (1, I) = xo(O,1) + xo(1, 1)W2 

If we rewrite Eq. (8.29) in matrix notation, we have 

[
XI(O,O)] [1 ° W

O 
0] [XO(O,O)] XI(O,1) ° 1 ° WO xo(O,l) = 2 XI(1,O) lOW ° xo(1,O) 

XI(l,1) ° 1 ° W 2 xo(1,1) 

(8.28) 

(8.29) 

(8.30) 

Note that Eq. (8.30) is exactly the factored matrix equation of Eq. (8.11), 
developed in Sec. 8.2, with the index k written in binary notation. Thus, the 
inner summation of Eq. (8.27) specifies the first of the factored matrices for 
the example developed in Sec. 8.2 or, equivalently, the array I = 1 of the 
signal flow graph illustrated in Fig. 8.2. 

Similarly, if we write the outer summation of Eq. (8.27) as 

I 

x2(nO,nl) = ~ xI(no,ko)W(2n,+no)ko 
ko~O 

and enumerate the results in matrix form, we obtain 

WO ° 
W 2 ° ° 1 ° 1 

(8.31) 

(8.32) 

which is Eq. (8.14). Thus, the outer summation of Eq. (8.27) determines the 
second of the factored matrices of the example in Sec. 8.2. 

From Eqs. (8.27) and (8.31) we have 

(8.33) 
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That is, the final results x2(nO,nl) as obtained from the outer sum are in bit
reversed order with respect to the desired values X(nl ,no). This is simply 
the scrambling that results from the FFT algorithm. 

If we combine Eqs. (8.28), (8.31), and (8.33), 

I 

X I (no ,ko) = L xo(k I ,ko) W 2nokl 

kl=O 

I 

L x I (no ,ko) w(2m + nolko 

ko=O 
(8.34) 

then the set of Eq. (8.34) represents the original Cooley-Tukey [3] formu
lation of the FFT algorithm for N = 4. We term these equations recursive 
in that the second is computed in terms of the first. 

Example 8.1 Cooley-Tukey Algorithm: N = 8 

To illustrate further the notation associated with the Cooley-Tukey formulation of 
the FFT, consider Eq. (8.22) for the case N = 23 = 8. For this case, 

n = 4n2 + 2n, + no 

k = 4k2 + 2k, + ko 

and Eq. (8.22) becomes 

, , 

n; = 0 or 1 

k; = 0 or 1 

X(n2,nt,nO) = ~ ~ ~ XO(k2,k"ko)w(4n2+2nl+nol(4k2+2kl+kol 

ko=Okl=Okz=O 

Rewriting WP, we obtain 

W<4nz+2m +no)(4kz+2kl +ko) = w(4nz+2m + nol(4kzlW(4nz + 2m +nol(2kl) 

X w(4nz+2m+ no)(ko) 

We note that because WS = [ei2'Tr/s]s = 1, then 

w(4nz+2nl+nol(4k2l = [WS(2nzkz)][wS(nlkz)]w4nokz = W 4nokz 

w(4nz+2m+no)(2kll = [WS(nzkl)]w(2nl+no)(2kl) = w(2m+no)(2kl ) 

Hence, Eq. (8.36) can be rewritten as 

t , 

X(n2,n"nO) = ~ ~ ~ XO(k2,kt,ko)w4nok2 
ko=O kl =0 kz=O 

X w(2nl+no)(2kllw(4nz +2nl+no)(ko) 

(8.35) 

(8.36) 

(8.37) 

(8.38) 

(8.39) 
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If we let 
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xl(no,kl,ko) = L XO(k2,kl,ko)W4nOk2 
k2~O 

I 

X (n n k) = ~ x (n k k )w(2n1 +no)(2kIl 2 0, 1, 0 4.; I 0, 1, 0 
kl ~O 

I 

X3(nO,nl,n2) = L X2(nO,nl,ko)w(4m+2nl+no)(ko) 
ko~O 

Chap. 8 

(8.40) 

(8.41) 

(8.42) 

(8.43) 

then we have determined the required matrix factorization or, equivalently, the signal 
flow graph for N = 8. The signal flow graph is shown in Fig. 8.9. 

Derivation of the Cooley-Tukey Algorithm for N = 2'Y 

When N = 2'1, nand k can be represented in binary form as 

n - 2-y-l n-y_t + 2-y-2 n-y_2 + 

k 2-y- 1k-y_1 + 2-y- 2k-y_2 + 
+ no 

+ ko 

Using this representation, we can rewrite Eq. (8.22) as 
t 

X(n-y_1 ,n-y-2, ... ,no) = 2: 2: ... . ,ko)WP 
k-y-l~O 

COMPUTATION ARRAYS 

(8.44) 

(8.45) 

DATA " . \ UNSCRAMBLED 
ARRAY '/-, 1-2 1-3 ARRAY 

"o(k) I i1lkf x2(k) x3(k) 

XO(O)I-------___ ....-----_....,._-----l-. ...... - - - _X(O) 
wO x3(O) 

Figure 8.9 FFT signal flow graph for N = 8. 
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where 

p = (2'Y-1n'Y_1 + 2'Y-2n'Y_2 + ... + no) 

X (2'Y- 1k'Y- 1 + 2'Y- 2k'Y_ 2 + ... + ko) 

Because wa + b = wa Wb , we rewrite WP as 

Now consider the first term of Eq. (8.47): 

because 

[ W2'Y(2'Y-2n'Y-lk'Y-Il] 

X [W2'Y(2'Y-3n'Y-2k'Y-I)] 

X ... [W2'Y(nlk'Y- 1)] 

X w2'Y- 1(no k'Y-1l 

w2'Y-1(no k'Y-I) 

Similarly, the second term of Eq. (8.47) yields 

X [W2'Y(2'Y-4n'Y-2k'Y-2)] 

X ... w 2'Y- 1(nl k'Y- 2) 

X w 2'Y- 2(n o k'Y-2) 
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(8.46) 

(8.47) 

(8.48) 

(8.49) 

(8.50) 

Note that as we progress through the terms of Eq. (8.47), we add an
other factor that does not cancel by the condition W2'Y = 1. This process 
continues until we reach the last term in which there is no cancellation. 

Using these relationships, Eq. (8.45) can be rewritten as 

I I 

X(n'Y-1,n'Y-2, ... ,no) = ~ ~... ~ xo(k'Y-.,k'Y- 2, ... ,ko) 
ko=O kl =0 k'Y-1 =0 

(8.51) 
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Performing each of the summations separately and labeling the intermediate 
results, we obtain 

xl(no,k.y- 2, ... ,ko) = L XO(k"Y_I,k"Y_2, ... ,ko)W(2.,,-I)(no k.,,-l) 
k.,,-l~O 

I 

( k k ) ~ x (n k k )W(2nl+no)(2.,,-2k.,,-2) X2 nO,nl, '1-3, ... , 0 = £.J I 0, '1-2,···, 0 
k.,,-2~0 

x"y(no,nl , ... ,n"y- d = L x"y-I(no,nl, ... ,ko) 
ko~O 

X(n"y-I ,n"y-2, ... ,no) = x"y(no,nl , ... ,n"Y-1) 

(8.52) 

This set of recursive equations represents the original Cooley-Tukey 
formulation of the FFT, N = 2'1. Recall that the direct evaluation of an N
point transform requires approximately N 2 complex multiplications. Now 
consider the number of multiplications required to compute the relationships 
of Eq. (8.52). There are -y summation equations that each represent N equa
tions. Each of the latter equations contains two complex multiplications; 
however, the first multiplication of each equation is actually a multiplication 
by unity. This follows because the first multiplication is always of the form 
Wak.,,-i, where k"y- i = O. Thus, only N-y complex multiplications are required. 
It can be shown that in the computation of an array, there occurs the re
lationship WP = - WP + N12; the number of multiplications can be reduced 
by another factor of 2. The number of complex multiplications for N = 2'1 
is then N-y12. Similarly, one can reason that there are N-y complex additions. 

Canonic Forms of the FFT 

There exist many variations of the FFT algorithm that are canonic. 
Each particular algorithm variation is formulated to exploit either a particular 
property of the data being transformed or the computer architecture. The 
Cooley-Tukey algorithm is illustrated by the signal flow graph of Fig. 8.9. 
We observe from the signal flow graph that this form of the algorithm can 
be computed in place, that is, a dual-node pair can be computed and the 
results stored in the original data storage locations. Further, we observe that 
with this form of the algorithm, the input data is in natural order and the 
output data is in scrambled order. In addition, the powers of Ware in bit
reversed order. 

If one desires, it is possible to rearrange the signal flow graph shown 
in Fig. (8.9) in order that the input data is in scrambled order and the output 
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data is in natural order. The resulting signal flow can be computed in place 
and the powers of W necessary to perform the computation occur in natural 
order. 

These two algorithms are often referred to in the literature by the term 
decimation in time. This terminology arises because alternate derivations 
of the algorithm [8] are structured to appeal to the concept of sample-rate 
reduction or throwing away samples. 

Another distinct form of the FFT is due to Sande [9]. To develop this 
form, let N = 4 and write 

\ \ 

X(nt.no) = ~ ~ xo(k\,ko)w(2nl+no)(2kl+ko) 
ko=O kl =0 

(8.53) 

In contrast to the Cooley-Tukey approach, we separate the components 
of n instead of the components of k. 

W(2m + no) W(2kl + ko) = w(2m )(2kl + ko) Wno(2kl + ko) 

where W 4 = 1. 

[W4mkl] W2mko Wno(2kl + ko) 

w2mko wno(2kl + ko) 

Thus, Eq. (8.53) can be written as 

X(n\,no) = ko~O [k~O xo(kt.ko)W2noklwnoko]W2nlko 

If we define the intermediate computational steps, then 
\ 

x\(no,ko) = ~ xo(k t.ko) W 2nokl Wnoko 
kl=O 

\ 

x2(nO,n\) = ~ x\(no,ko)W2n lkO 

ko=O 

X(nt.no) = x2(no,nd 

(8.54) 

(8.55) 

(8.56) 

The signal flow graph describing the Sande-Tukey algorithm is shown 
in Fig. 8.10 for the case N = 8. We note that the input data is in natural 
order, the output data is in scrambled order, and the powers of W occur in 
natural order. A signal flow graph that yields results in natural order can be 
developed by proceeding as in the Cooley-Tukey case and interchanging 
nodes. The input data is now in bit-reversed order and the powers of W 
occur in bit-reversed order. 

These two forms of the FFT algorithm are known by the term deci
mation infrequency, where the reasoning for the terminology is analogous 
to that for decimation in time. 
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xO(k) x3(k) 

x(O) _----'"'It--__ :----'l~ X(O) 

x(11 

x(2) 

x(3) 

x(4) 

x(5) 

x(6) 

x(7) Figure 8.10 Sande-Tukey FFT algo
rithm signal flow graph. 

8.10 FFT ALGORITHMS FOR ARBITRARY FACTORS 

In the discussions to this point, we have assumed that the number of points 
N to be Fourier transformed satisfies the relationship N = 2'Y, where "y is 
integer valued. As we saw, this base-2 algorithm resulted in a tremendous 
savings in computation time; however, the constraint N = 2'Y can be rather 
restrictive. In this section, we develop FFT algorithms that remove this 
assumption. We will show that significant time savings can be obtained as 
long as N is highly composite, that is, N = r)r2 ... r m, where ri is an 
integer. 

To develop the FFT algorithm for arbitrary factors, we first consider 
the case of N = r)r2. This approach allows us to develop the notation 
required in the proof for the general case. Examples for the base-4 and base
"4 + 2" algorithms are used to further develop the case N = r)r2. The 
Cooley-Tukey algorithm for the case N = r)r2 ... rm is then developed as 
well as twiddle factor algorithms. 

FFT Algorithm for N = f1 f2 

Assume that the number of points N satisfies the relationship N 
r)r2, where r) and r2 are integer valued. To derive the FFT algorithm for 
this case, we first express the nand k indices in Eq. (8.22) as 

no = 0, 1, ... , r) - n) = 0, 1, ... , r2 - 1 

ko = 0, 1, ... , r2 - k) = 0, 1, ... , r) - 1 
(8.57) 
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We observe that this method of writing the indices allows us to give a unique 
representation of each decimal integer. Using Eq. (8.57), we can rewrite Eq. 
(8.22) as 

X(n I ,no) = r~ I [ri: I xo(k I ,ko) wnklr2 ] wnko 
ko=O kl =0 

Rewriting W nk"2, we obtain 

w(mn + no)kln 

wnnmkl wnokln 

[wnn]mkl wnokln 

where we have used the fact that wnn = W N = 1. 

(8.58) 

(8.59) 

From Eq. (8.59), we rewrite the inner sum of Eq. (8.58) as a new array: 

'I - I 

XI (no,ko) = ~ XO(kl,ko)wnokl'2 
kl=O 

If we expand the terms W nko, the outer loop can be written as 

'2-1 

x2(no,nd = ~ xI(no,ko)w(mn+no)ko 
ko=O 

The final result can be written as 

Thus, as in the base-2 algorithm, the results are in reverse order. 

(8.60) 

(8.61) 

(8.62) 

Equations (8.60), (8.61), and (8.62) are the defining FFT algorithm re
lationships for the case N = rlr2. To further illustrate this particular al
gorithm, consider the following examples. 

Example 8.1 Base-4 Algorithm for N = 16 

Let us consider the case N = '1'2 = 4 x 4 = 16, that is, we will develop the base-
4 algorithm for the case N = 16. Using Eq. (8.57), we represent the variables nand 
kin Eq. (8.22) in a base-4 or quaternary number system: 

n = 4nl + no 

k = 4kl + ko 

Equation (8.58) then becomes 

nl,no = 0, 1,2,3 (8.63) 
k],ko = 0, 1,2,3 

(8.64) 
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Rewriting W'nkt, we obtain 

The Fast Fourier Transform (FFT) 

W4nkt w4(4nt + no)kt 

w.6ntkt W 4nOk t 

= [W.6]ntkt W 4nokt 

= W4nOk t 

The term in brackets is equal to unity because W· 6 = 1. 

Chap.S 

(8.65) 

Substitution of Eq. (8.65) into Eq. (8.60) yields the inner sum of the base-4 
algorithm: 

From Eq. (8.61) the outer sum is 

3 

L xo(k.,ko)w4nokt 

kt=O 

3 

x2(nO,n.) = L x.(no,ko)w(4nt +no)ko 
ko=O 

and from Eq. (8.62), the base-4 algorithm results are given by 

X(n .,no) = x2(nO,n.) 

(8.66) 

(8.67) 

(8.68) 

Equations (8.66), (8.67), and (8.68) define the base-4 algorithm for the case N 
16. Based on these equations, we can develop a base-4 signal flow graph. 

Example 8.2 Base-4 Signal Flow Graph for N = 16 

From the defining relationships of Eqs. (8.66) and (8.67), we observe that there are 
"I = 2 computational arrays and there are four inputs to each node. The inputs to 
node x. (no,ko) are xo(O,ko), xo(1,ko), xo(2,ko), and xo(3,ko). That is, the four inputs 
to a node i in array I are those nodes in array I - 1 whose subscripts differ from i 
only in the ("I - l)th quaternary digit. 

We show in Fig. 8.11 an abbreviated signal flow graph for the base-4 N = 16 
algorithm. To alleviate confusion, only representative transmission paths are shown 
and all WP factors have been omitted. WP factors can be determined from Eqs. (8.66) 
and (8.67). Each pattern of transmission paths shown is applied sequentially to suc
cessive nodes until all nodes have been considered. Figure 8.11 also illustrates the 
unscrambling procedure for the base-4 algorithm. Enumeration of Eqs. (8.66) and 
(8.67) reveals that the base-4 algorithm requires approximately 30 percent fewer 
multiplications than the base-2 algorithm. 

Example 8.3 Base-"4 + 2" Algorithm for N = 8 

Let us now consider the case N = '.'2 = 4 x 2 = 8. This case represents the 
simplest form ofthe base-"4 + 2" algorithm. Base "4 + 2" implies that we compute 
as many arrays as possible with a base-4 algorithm and then compute a base-2 array. 

To develop the "4 + 2" algorithm, we first substitute,. = 4 and '2 = 2 into 
Eq. (8.57): 

n = 4n. + no 

k = 2k. + ko 

no = 0, 1,2,3 

ko = 0, 1 

n. = 0, 1 (8.69) 
k. = 0, 1, 2, 3 
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DATA 
ARRAY 

xO(k,."o) 

COMPUTATION ARRAYS 
A 

"o(O.O)_----------,_--:II-=:::------_--c:= __ - - - -

xO(2.0)tE----+---1!-+--~ 

xO(3.O)~---------'" 

UNSCRAMBLED 
ARRAY 

X(k) 

-_.X(O) 
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"2(3.3) - - - - - _. X(15) 

Figure 8.11 Abbreviated signal flow graph: base 4, N = 16. 

Equation (8.58) then becomes 

X(nl,no) 

Expanding w2nkl, we obtain 

[W8r1kl w2nokl 

W 2nOk l 

(8.70) 

(8.71) 
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With Eq. (8.71), the inner sum of Eq. (8.70) becomes 

3 

X I (no ,ko) = L xo(k I ,ko) w2no/q 
kt~O 

The outer loop can be written as 

x2(nO,nl) = L xl(no,ko)w(4n t +no)ko 
ko~O 

and the unscrambling is accomplished according to the relationship 

Chap. 8 

(8.72) 

(8.73) 

(8.74) 

Equations (8.72), (8.73), and (8.74) represent the base-"4 + 2" FFT algorithm 
for N = 8. We observe that Eq. (8.72) is a base-4 iteration on the data array and 
Eq. (8.73) is a base-2 iteration on array I = 1. The "4 + 2" algorithm is more efficient 
than the base-2 algorithm and is equally restrictive in the choice of N. 

Cooley-Tukey Algorithm for N = '1'2 . .. 'm 

Assume that the number of points to be discretely transformed satisfies 
N = r 1 r2 ... , m, where rl , '2, ... , r m are integer valued. We first express 
the indices nand k in a variable radix representation: 

where 

k = km-1(r2r3 ... 'm) + km-2(r3r4 . .. rm) 

+ ... + kl'm + ko 

ni-I = 0, 1,2, ... ,ri - 1 

k i = 0, 1,2, ... , 'm-i -

We can now rewrite Eq. (8.22) as 

X(n m -l,nm -2, ... ,n, ,no) 

= ~ ~ ... ~ xo(km - t ,km - 2, ... ,ko)wnk 
ko kt km-t 

(8.75) 

(8.76) 

where ~ki represents a summation over all k i = 0, 1,2, ... , rm-i - 1; 0 
:S i:S m - 1. Note that 

wnk = Wn[km-t(nr3 ... rm)+···+kol (8.77) 
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and the first term of the summation expands to 

Because Wnn. . .rm wN = 1, then Eq. (8.78) can be written as 

(8.79) 

and hence Eq. (8.77) becomes 

(8.80) 

Equation (8.76) can now be rewritten as 

X(n m -l,nm -2, ... ,nl,nO) = L L ... [ L xo(km - l ,km - 2, ... ,ko) 
ko kl km-l 

X WnOkm - l(n ... rm)] W n[km-2(TJ .•. rm) + ... + kol 
(8.81) 

Note that the inner sum is over km -I and is only a function of the variables 
no and k m - 2, ... , ko. Thus, we define a new array as 

xI(no,km - 2, ... ,ko) = L xo(km - I , ... ,ko)wnokm-l(n ... rm) 
kTn - I 

Equation (8.81) can now be rewritten as 

X w n[km-2(TJ ... rm)+···+kO] 

By arguments analogous to those leading to Eq. (8.79), we obtain 

(8.82) 

(8.83) 

(8.84) 

The identity of Eq. (8.84) allows the inner sum of Eq. (8.83) to be 
written as 

= L xI(no,km - 2, ... ,ko)W(nIn+no)km-2(TJr4 ... rm) 
km -2 

We can now rewrite Eq. (8.83) in the form 

X(n m -l,nm -2, ... ,nl,nO) = L L ... L X2(nO,nl,k m - 3 , ••• ,ko) 
ko kl km-3 

X Wn [km -3(r4rs ... rm )+···+kO) 

(8.85) 

(8.86) 
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If we continue reducing Eq. (8.86) in this manner, we obtain a set of 
recursive equations of the form 

Xi(nO,nl, ... ,ni-I,km - i - I , ... ,ko) 

~ xi-l(nO,nl, ... ,ni-2,km - i , ... ,ko) 
km-i 

X w[n;-I('1,., .. .rI- I) + ... + nolkm -1('1+ I ... rm) i = 1, 2, ... , m 

(8.87) 

The expression of Eq. (8.87) is valid provided we define (ri+ I ... r m) 
for i > m - 1 and k _ I = o. 

The final results are given by 

(8.88) 

The expression of Eq. (8.87) is an extension due to Bergland [10] of 
the original Cooley-Tukey algorithm. We note that there are N elements in 
array XI, each requiring rl operations (one complex multiplication and one 
complex addition), giving a total of Nrl operations to obtain Xl. Similarly, 
it takes Nr2 operations to calculate X2 from Xl. Thus, the computation of Xm 

requires N(rl + r2 + ... + r m) operations. This bound does not take into 
account the symmetries of the complex exponential that can be exploited 
as developed in the following discussions. 

Example 8.4 Base-4, N = 16, Twiddle Factor Algorithm 

Recall from Eqs. (8.66) and (8.67) that the recursive equations for the base-4 FFT 
algorithm for N = 16 are given by 

xI(no,ko) = L xo(kl,ko)w4no/q 
kl ~o 

3 

x2(no,nd = L xl(no,ko)w(4n l +no)ko 
ko~O 

To illustrate the twiddle factor concept, let us rewrite Eq. (8.89) as 

(8.89) 

Note that the term Wnoko has been arbitrarily grouped with the outer sum and could 
have just as easily been grouped with the inner sum. By regrouping, Eq. (8.90) 
becomes 
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or in recursive form 

xl(no,ko) = [k~O XO(kl,ko)W4no,,,] Wnoko 

xz(no,n\) = [k~O XI(no,ko)W4n,ko] 
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(8.92) 

(8.93) 

(8.94) 

The form of the algorithm given by Eq. (8.92) exploits the symmetries of the 
sine and cosine functions. To illustrate this point, consider the term W4nok, in brackets 
in Eq. (8.92). Because N = 16, then 

(8.95) 

Thus, W4nok, only takes on the values ± i and ± 1, depending on the integer nok\. 
As a result, the four-point transform in brackets in Eq. (8.92) can be evaluated 
without multiplications. These results are then referenced or twiddled [9] by the 
factor Wnoko, which is outside the brackets in Eq. (8.92). Note that by similar ar
guments, Eq. (8.93) can be evaluated without multiplications. The total computations 
required to evaluate the base-4 algorithm have been reduced by this regrouping. 

Cooley· Tukey Twiddle Factor Algorithm 

We now develop a general formulation of the twiddle factor concept. 
The original Cooley-Tukey formulation is given by the set of recursive Eqs. 
(S.S7). If we regroup these equations, the first array takes the form 

km-I 

(S.96) 

and the succeeding equations are given by 

= [ L xi-l(nO, . .. ,ni-2,km - i , . .. ,ko)Wni-,km-i(NIr;)] (S.97) 
km-I 

We have used the notation x to indicate that these results have been obtained 
by twiddling. Equation (S.92) is valid for i = 1, 2, ... , m if we interpret 
the case i = 1 in the sense of Eq. (S.96) and if we define (ri+2 ... rm) = 
1 for i > m - 2 and k _ I = O. 

Each iteration of Eq. (S.97) requires the evaluation of an ri-point Four
ier transform followed by a referencing or twiddling operation. The impor
tance of this formation is that the bracketed ri-point Fourier transforms can 
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be computed with a minimum number of multiplications. For example, if ri 
= 8 (that is, a base-8 transform), then the WP factor in brackets only takes 
on the values ± 1, ±j, ± eJ-rr/4, and ± e - frr/4. Because the first two factors 
require no multiplications and the product of a complex number and either 
of the last two factors requires only two real multiplications, a total of only 
four real multiplications are required in evaluating each eight-point trans
form. As we see, the twiddle factor algorithms allow us to take advantage 
of the properties of the sine and cosine functions. 

computations Required by Base-2, Base-4, Base-S, 
and Base-16 Algorithms 

Let us consider the case N = 212 = 4096. The real number of multi
plications and additions required to evaluate the recursive Eq. (8.97) is given 
in Table 8.1. This summary of operations was first reported by Bergland 
[to]. In counting the number of multiplications and additions, it is assumed 
that each of the twiddling operations requires one complex multiplication 
except when the multiplier is Woo 

TABLE 8.1 Operations Required in Computing 
Base-2, Base-4, Base-S, and Base-16 FFT 

Algorithms for N = 4096 

Number of real Number of real 
Algorithm multiplications additions 

Base 2 81,924 139,266 
Base 4 57,348 126,978 
Base 8 49,156 126,978 
Base 16 48,132 125,442 

PROBLEMS 

8.1. Let xo(k) = k, where k = 0, 1, 2, and 3. Compute Eq. (8.1) and note the total 
number of multiplications and additions. Repeat the calculation following the 
procedure outlined by Eqs. (8.6) through (8.14) and again note the total number 
of mUltiplications and additions. Compare your results. 

8.2. It has been shown that the matrix-factoring procedure introduces scrambled 
results. For N = 8, 16, and 32, show the order of X(n) that results from the 
scrambling. 

8.3. It is desired to convert Eq. (8.9) into a signal flow graph for the case N = 8. 
(a) How many computation arrays are there? 
(b) Define dual nodes for this case. What is the dual-node spacing for each 

array? Give a general expression and then identify each node with its duals 
for each array. 
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(c) Write the equation pair (8-21) for each node for array 1. Repeat for the 
other arrays. 

(d) Determine WP for each node and substitute these values into the equation 
determined in part c. 

(e) Draw the signal flow graph for this case. 
(f) Show how to unscramble the results of the last computational array. 
(g) Illustrate the concept of node skipping on the signal flow graph. 

8.4. Verify the computer program flowchart illustrated in Fig. 8.6 by mentally ob
serving that each of the arrays determined in Problem 8.3 is correctly 
computed. 

8.5. Relate each statement of the BASIC program illustrated in Fig. 8.7 with the 
computer program flowchart shown in Fig. 8.6. 

8.6. Write an FFT computer program based on the flowchart illustrated in Fig. 8.6. 
The program should be capable of accepting complex time functions and per
forming the inverse transform using the alternate inversion formula. Call this 
program FFT. 

8.7. Leth(t) = e- t , where t > O. Sampleh(t) with T = 0.01 andN = 1024. Compute 
the discrete Fourier transform of h(k) with both FFT and OFT. Compare com
puting times. 

8.8. Derive the FFT algorithm for N = r1r2 for the case where the components of 
n are separated, i.e., the Sande-Tukey algorithm. 

8.9. Develop the signal flow graph for the base-4 Sande-Tukey algorithm for N = 
16. 

8.10. Develop the Sande-Tukey base-"4 + 2" algorithm for the case N = 8. 

8.11. Develop fully the Sande-Tukey algorithm for the case N = r 1, r2, ... , r m' 

8.12. Develop the Cooley-Tukey base-8 algorithm for the case N = 64. 

8.13. Let N = 16. Develop the Sande-Tukey twiddle factor algorithm. 

8.14. Let N = 8. Is there an advantage in using twiddle factors in computing the 
FFT by the Cooley-Tukey base-2 algorithm? Verify your conclusions by dem
onstrating the required number of mUltiplications in each case. 

8.15. Repeat Problem 8.14 for the base-"4 + 2" algorithm. 

8.16. Develop a FFT computer program for a base-"4 + 2" Cooley-Tukey algorithm 
and bit-reversed data. 

8.17. Develop a FFT computer program for a base-"4 + 2" Sande-Tukey algorithm 
and the data in natural order. 

8.18. Develop a FFT computer program for a base-"8 + 4 + 2" Sande-Tukey 
algorithm with data in natural order. The program should maximize the number 
of base-8 computations, then maximize the number of base-4 computations. 
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FFT TRANSFORM 

APPLICATIONS 

A fundamental application of the FFT is to the multifaceted areas of trans
form analysis. In Chapter 6, we developed the relationship between discrete 
and continuous Fourier transforms. Because the discrete Fourier transform 
yields a close approximation to the continuous Fourier transform, we expect 
significant usage of the FFT in computing Fourier and inverse Fourier trans
forms. In this chapter, we explore.the mechanics of applying the FFT to the 
computation of Fourier transforms, Fourier series, inverse Fourier trans
forms and Laplace transforms. As we show, differences between continuous 
transforms and FFT results arise because of the discrete transform require
ments for sampling and truncation. 

9.1 FOURIER TRANSFORM APPLICATIONS 

To illustrate the application of the FFT to the computation of Fourier trans
forms, consider Fig. 9.1. We show in Fig. 9.1(a) the function e- t • We wish 
to compute by means of the FFT an approximation to the Fourier transform 
of this function. 

The first step in applying the discrete transform is to choose the number 
of samples N and the sample interval T. For N = 32 and T = 0.25, we show 
the samples of e - t in Fig. 9.1 (a). Note that we have defined the sample value 
at t = 0 to be consistent with Eq. (2.47), which states that the value of the 
function at a discontinuity must be defined to be the mid value if the inverse 
Fourier transform is to hold. 
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Figure 9.1 Example of Fourier transform computation via the FFT. 
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Figure 9.1 (cont.) 

We next compute the discrete Fourier transform using the FFT: 

H(.!!...-) = T N~ I [e - kT]e - j2'ITnklN 

NT k=O 
n = 0, I, ... , N - 1 
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(9.1) 

Note that the scale factor T is introduced to produce equivalence between 
the continuous and discrete transforms. These results are shown in Figs. 
9.I(b) and (c). In Fig. 9.I(b), we show the real part of Fourier transform as 
determined in Ex. 2.1 and as computed by Eq. (9.1). Note that the discrete 
transform is symmetrical about n = N12. This follows because the real part 
of the transform is even [Eq. (6.35)] and the results for n > NI2 are simply 
negative frequency results. This latter point is emphasized by plotting a true 
frequency scale beneath the scale for parameter n. 

We could have graphed the data of Fig. 9.1(b) in the manner conven
tionally used to display the continuous Fourier transform, that is, from - fo 
to + fo. However, conventional FFT computer programs provide results as 
a function of the parameter n. As long as we remember that those results 
for n > NI2 actually relate to negative frequency results, then we should 
encounter no interpretation problems. 

In Fig. 9.I(c), we illustrate the imaginary part of the Fourier transform 
(Ex. 2.1) and the discrete transform. As shown, the FFT approximates rather 
poorly the continuous transform for the higher frequencies. To reduce this 
error, it is necessary to decrease the sample interval T and increase N. 
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We note that the imaginary function is odd with respect to n = N12. 
This follows from Eq. (6.38). Repeating, those results for n > NI2 are to be 
interpreted as negative frequency results. 

FFT Resolution 

The FFT results of Figs. 9.l(b) and (c) are spaced in frequency by the 
interval fo = liNT. As a result, frequency samples approximating the Four
ier transform are computed for nonnegative frequencies OINT, liNT, 21 NT, 
... , (NI2)INT. The FFT frequency spacing fo = liNT is termed the res
olution of the FFT and each frequency result is called a resolution element 
or resolution cell. Intuitively, we can think of the term resolution in the 
sense that we can resolve or distinguish only frequency samples approxi
mating the Fourier transform for the frequencies OINT, liNT, 2INT, ... , 
(NI2)INT. Because resolution is given by liNT, then a decrease in the fre
quency spacing (increased resolution) can be achieved by increasing N, that 
is, by increasing the truncation interval of the function to be transformed. 
(An increase in T could result in aliasing.) If N is increased by a factor of 
two, then the frequency spacing is decreased by a factor of two. Beware 
that the term increase in resolution is ambiguous in that one is not sure if 
a larger or smaller resolving power is implied. 

Recall from Fig. 6.1 that the frequency spacing (resolution) in the dis
crete Fourier transform is determined by the width of the rectangle that 
mUltiplies and truncates the function to be transformed. This truncation in 
the time domain corresponds to convolution of the [sin(f)]lf function with 
the Fourier transform of the original time waveform. Convolution with the 
[sin(f)]lf function produces a smearing or blurring of the Fourier transform. 
The wider the time-domain truncation function, the narrower the [sin(f)]lf 
function and the less the frequency smear. The less the frequency smear, 
the better the frequency-resolving power that is possible. Hence, increased 
frequency-resolving power of the FFT is established by the degree of fre
quency smearing that is achieved by increasing the width of the rectangular 
truncation function. 

A common mistake made by FFT users is to increase N by appending 
zeros to the sampled and truncated function and to interpret the results as 
having enhanced resolution. This is not the case, as can be seen from an 
examination of Figs. 6.2 and 9.2. We show in Fig. 9.2(a) the discrete Fourier 
transform resullts, Fig. 6.2(g), from the development of Fig. 6.2. We wish 
to observe the effect of appending zeros to the time function of Fig. 9.2(a). 
Assume that the number of zeros to be appended is N. This can be achieved 
by multiplication by the periodic time function illustrated in Fig. 9.2(b); the 
corresponding frequency function is also shown. Multiplication yields a pe
riodic function of length 2N, where the nonzero values are defined by the 
N samples of Fig. 9.2(a). Multiplication in time implies convolution of the 
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frequency function of Figs. 9.2(a) and (b). Note that the frequency resolution 
has already been set in Fig. 9.2(a) and the convolution operation merely 
provided additional frequency samples by interpolating with a [sin(f)]/f func
tion the original frequency transform results. Hence, although the frequency 
spacing of the FFT results are more closely spaced as a result of adding 
zeros, the resolution has not been changed. FFT resolution cannot be en
hanced by appending zeros unless the function is in fact zero-valued over 
the interval where the zeros are appended. 

Recall that this discussion simply reinforces the well-known fact that 
resolution is determined by the time duration of a signal. In FFT applications, 
the time duration of the signal is set by the truncation interval duration. 

Example 9.1 FFT Aliasing 

One problem encountered when computing the Fourier transform with the FFT is 
that of aliasing. As stated in Sec. 5.3, aliasing occurs if samples of the time function 
are not taken sufficiently close together. The result is that the frequency function 
folds, or overlaps, on itself. Figure 9.3 graphically illustrates this point. 

In Figs. 9.3(a) to (c), we have sampled the function h(t) = e-', t > 0, with 
sample intervals T = 1.0,0.5, and 0.25 s, respectively. N is set to 32 for each case. 
The magnitude of the Fourier transforms as computed by the FFT are also shown 
in Figs. 9.3(a) to (c). Note that the FFT results are severely aliased for sample interval 
T = 1.0 s. (The magnitude of the continuous Fourier transform is shown in Fig. 
9.3(d).) As shown, aliasing is reduced for T = 0.5 s. A further reduction in sample 
interval to T = 0.25 s yields results that compare favorably with the theoretical 
frequency function. Figure 9.3 illustrates the principle that aliasing is reduced as the 
sample interval is reduced. There is no truncation effect as T is reduced because NT 
is always significantly greater than the nonzero width of h(t). 

Experimentally, one can choose an appropriate sample interval by performing 
a series of computations similar to those of Fig. 9.3. By successively reducing the 
sample interval, one notices negligible change in the FFT results when an approx
imately small sample interval T has been chosen. However, care must be exercised 
to ensure that the effect of decreasing the truncation interval NT does not enter int( 
the results. If required, N can be increased as T is decreased. 

Example 9.2 FFT Time-Domain Truncation 

Another error commonly encountered in applying the FFT to computation of the 
Fourier transform arises from time-domain truncation. This error occurs when the 
total number of samples chosen to characterize the time function truncates the orig
inal time waveform. To illustrate this point, consider Figs. 9.4(a) to (c), where we 
have truncated h(t) at NT = 1,2, and 5 s, respectively. The magnitude of the Fourier 
transforms as computed by the FFT are also illustrated. 

Truncation at 1.0 s produces considerable rippling in the FFT results. For a 
truncation interval of 2.0 s, the FFT results display a decrease in rippling. A further 
increase in the truncation interval to 5.0 s yields FFT results that have no apparent 
time-domain truncation rippling effect, as evidenced by Fig. 9.4(d). 

Figure 9.4 illustrates an experimental approach for determining a suitable trun-
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Figure 9.3 Illustration of frequency-domain aliasing as a function of sampling rate. 
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Figure 9.5 Illustration of the FFT of noncausal time functions. 

cation interval. By successively increasing the truncation interval, we can see the 
gradual reduction in the rippling effect. 

Example 9.3 FFT of Noncausal Time Functions 

Because the discrete Fourier transform requires periodicity in the time domain, care 
must be exercised when computing the FFT of a time function defined for both 
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positive and negative time (a noncausal function). To develop this point, consider 
the time function illustrated in Fig. 9.5(a). The appropriate technique for sampling 
such a function to maintain the time origin and to observe the periodicity constraint 
is shown in the sampled time function of Fig. 9.5(b). Although the one period shown 
does not closely resemble the original function, the periodic function does accurately 
reproduce the original time function. Because the time function is real and odd, from 
Eq. (6.38), we expect the frequency function to be purely imaginary and odd, as 
illustrated in Figs. 9.5(c) and (d). 

Figures 9.5(e) to (g) illustrate a common mistake when applying the FFT to 
time functions of this type. Note that the FFT results for this example are both real 
and imaginary. The real frequency component results from the time sample at t = 
o being defined as 1 rather than 0, the midpoint of the discontinuity. As a result, the 
sampled time function of Fig. 9.5(e) is equal to the time function of Fig. 9.5(b) plus 
an impulse function of unity amplitude at the origin. The Fourier transform of an 
impulse is a constant real function of frequency, as illustrated in Fig. 9.5(0. 

Example 9.4 FFT of Periodic Functions 

To compute the FFT of a periodic function, we again must concern ourselves with 
choosing the sample interval T and the truncation interval. As before, T must be 
chosen to reduce aliasing to an acceptable level. The truncation interval for a periodic 
function presents a new problem in that the function does not decay as in the previous 
examples. However, recall that the N samples of the discrete Fourier transform 
results represent one period of a periodic time function. Hence, we choose the trun
cation interval to be one period (or multiple periods) of the time waveform. In this 
way, our sampled function accurately represents the original periodic waveform. 

To illustrate this point, we have computed the FFT of the cosine function 
illustrated in Fig. 9.6(a). For sample interval T = 1.0 s and the number of samples 
N = 32, we also show samples of the cosine waveform in Fig. 9.6(a). Note that the 
32 samples define exactly an integer mUltiple of the period of the waveform. In Fig. 
9.6(b), we illustrate the magnitude ofthe FFT of these samples. As shown, the results 
are zero except at the desired frequency. Section 9.2 discusses FFT results for the 
case where the truncation interval is not chosen equal to an integer multiple of the 
period. 

Summary 

In applying the FFT to the computation of Fourier transforms, keep 
in mind the most important concept that the discrete Fourier transform im
plies is periodicity in both the time and frequency domains. If one always 
remembers that the N sample values of the time function represent one 
period of a periodic function, the application of the FFT should result in 
few surprises. 

The previous discussion and examples have shown that application of 
the FFT to the computation of the Fourier transform requires that we ex
ercise care in the choice of parameters T and N. Parameter T controls the 
level of aliasing, and parameters Nand T control the width of the truncation 
function. If the bandwidth is roughly known, then T can be chosen readily. 
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Otherwise, an experimental procedure as outlined in Exs. 9.1 and 9.2 should 
be pursued. For an appropriate T and for N chosen sufficiently large so that 
truncation of the function being transformed does not occur, the FFT will 
yield an accurate approximation to the Fourier transform. For periodic func
tions with known periods, we choose NT equal to a period (or integer mul
tiple of a period). For those cases where it is impossible to choose N suf
ficiently large or where the period of a periodic function is not known, the 
concept of a data-weighting function or data window must be employed. 

9.2 FFT DATA-WEIGHTING FUNCTIONS 

As discussed previously, time-domain truncation can lead to an unacceptable 
approximation to the Fourier transform. For those cases where data-pro
cessing constraints limit the value of N or for those cases where periodic 
functions of unknown period are considered, it is necessary to utilize data 
windows or data-weighting functions. In this section, we will investigate 
data-weighting functions, a technique for minimizing the undesired effects 
of time-domain truncation. 

Rectangular Weighting Function 

For review, reconsider the graphical development technique shown in 
Fig. 6.5. Recall that we first sample the sinusoid by mUltiplication with the 
infinite sequence of impulse functions, as illustrated in Fig. 6.5(b). This 
result, Fig. 6.5(c), must then be multiplied by the rectangular truncation 
function shown in Fig. 6.5(d) in order to limit the number of sample values 
to N. We refer to time-domain truncation as weighting the data by a rec
tangular weighting function. The result of time-domain truncation is evi
denced clearly in Fig. 6.5(e). Note that the original frequency-domain im
pulse functions have been replaced by [sin(f)]/f functions because of the 
convolution that results from time-domain truncation. This convolution in
troduces additional frequency-domain components because of the side-lobe 
characteristics of the [sin(f)]/f function. These additional components are 
termed leakage. This terminology arises because the original frequency im
pulse function has leaked through the side lobes of the [sin(f)]/f function. 

Note that even though our original time waveform is sinusoidal, the 
sampled time waveform is not. This is because the truncation interval is not 
equal to a period (or integer multiple of a period) and hence the convolution 
ofthe time functions in Figs. 6.5(e) and (f) does not yield the original periodic 
function. Rather, this convolution yields a periodic function with an envelope 
that is discontinuous. With this discontinuity, one expects the rippling effect 
in the frequency domain, which is illustrated in Fig. 6.5(g). 

To further demonstrate the effect of a rectangular weighting function, 
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we have computed the FFT of the cosine function illustrated in Fig. 9.7(a) 
for T = 1.0 sand N = 32. In Fig. 9.7(b), we show the magnitude of the 
discrete Fourier transform of the samples of Fig. 9.7(a). Note that the FFT 
produces nonzero frequency components at all discrete frequencies of the 
discrete transform. As stated previously, the additional frequency compo
nents are termed leakage and are a result of the side-lobe characteristics of 
the [sin(f)]/f function. 
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Figure 9.7 FFf of a periodic waveform: the truncation interval is not equal to 
a multiple of the period. 
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To reduce leakage, it is necessary to employ a time-domain truncation 
or weighting function that has frequency-domain side-lobe characteristics 
that are of smaller magnitude than those of the [sin(f)]!f function. The 
smaller the side lobes, the less leakage affects the results of the FFT. To 
clarify this point, consider Fig. 6.5(d) again. The Fourier transform of the 
rectangular weighting function is the [sin(f)]/f function shown. We know 
that we could choose, without change to the graphical development of Fig. 
6.5, an alternate truncation function in Fig. 6.5(d) that would have lower 
side-lobe characteristics. This is the approach one takes to improve the FFT 
approximation to the Fourier transform. Data-weighting functions that trun
cate and weight the data are applied to the N-point sampled function before 
the FFT is computed. 

Weighting Function Characteristics 

Several popular truncation or weighting functions that have been em
ployed with the FFT are shown in Fig. 9.8(a). The corresponding frequency
response functions are illustrated in Fig. 9.8(b). Table 9.1 lists the defining 
relationships for each of these weighting functions in both the time domain 
(centered at the origin for convenience of notation) and the frequency 
domain. 

As shown in Fig. 9.8(b), all weighting functions have side lobes in the 
frequency domain of lower amplitude than those of the rectangular function 
and hence produce less leakage. However, all of the weighting functions 
also have a broader main lobe. Recall from Figs. 6.5(d) and (e) that the effect 
of time-domain truncation (weighting) is a frequency-domain convolution, 
with the respective frequency function shown in Fig. 9.8(b). Hence, the 
broader the main lobe, the more smeared the results of the FFT, that is, the 
broader the main lobe of the weighting function, the less the capability of 
the FFT to distinguish or resolve frequencies. In general, the more one 
reduces side lobes or leakage, the broader or more smeared the results of 
the FFT appear. 

The trade-off between leakage (side-lobe level) and resolution (main
lobe bandwidth) is well-known in many scientific fields. Table 9.1 defines 
the highest side-lobe level and the 3-dB bandwidth for each weighting func
tion. For general experimental work, we prefer to use the Hanning function 
because of its implementation simplicity. One should choose that weighting 
function whose characteristics are best suited to the problem being 
addressed. 

It should be noted that irrespective of the weighting function chosen, 
the FFT yields results at frequency intervals fo = 1INT. But the actual 
frequency resolution of FFT results is a function of the data-weighting func
tion's bandwidth (see Fig. 9.8(b)). Hence, the commonly used FFT reso
lution definition 11 NT should be used with care as it describes only the 
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Bartlett 
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Panen 

TABLE 9.1 Data Weighting Functions (To = NT) 

Time Domain 

I To 
wRIt) = I t I ,,; -

2 

I To 
=0 tl>-

2 

WB(t) = I - - I t I < -[ 21tlJ To 
To 2 

To 
=0 Itl>-

2 

WHet) = cos2 (To) 
= H I +cos e;:) J Itl,,;.!'.!! 

2 

=0 Itl>.!'.!! 
2 

Wp(t) = 1-24 - +48 - Itl<.J! ( t )2 1 t 11 T 
To To 4 

=2[1_~]1 .!'.!!<Itl<.!'.!! 
To 4 2 

To 
=0 It 1"""'2 

Frequency Domain 

WR(f) = To sinhrfTo) 

"'fTo 

WB(f) = ~ [Sin ~¥ fTo )]2 

"2fTo 

To sin(",fTo) 
WH(f) = "'2 ",fTo [I - (fTo)2] 

W p(f) = 3To [Sin("'fTo/4 )]4 
8 "'fTo/4 

Highest 
Side-Lobe 
Level (db) 
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-26 

-32 

-52 

Asymptotic 
3-dB Rolloff 
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To 
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To 
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To 
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frequency spacing of the FFT results and is independent of the window used. 
In Chapter 13, where the FFT in the context of filters is discussed, we return 
to this point. 

Because of the low side-lobe characteristics of the illustrated data
weighting functions, we expect that their utilization significantly reduces the 
leakage that results from time-domain truncation. In Fig. 9.9(a), we show 
the cosine waveform illustrated in Fig. 9.7(a) multiplied by the Hanning 
weighting function illustrated in Fig. 9.8(a). 

Figure 9.9(b) illustrates the FFT of the samples of Fig. 9.9(a). As ex
pected, leakage is significantly reduced. Note that the majority of the fre
quency components are considerably broadened or smeared with respect to 
the desired impulse function. Recall that this is expected because the effect 
of time-domain truncation or weighting is to convolve the frequency-impulse 
function with the Fourier transform of the weighting function. 

Example 9.5 FFT Signal Detection 

A practical application of the utilization of the Hanning weighting function (or any 
other good truncation function) is in signal detection. To illustrate, consider the 
frequency function in Fig. 9.1O(a), which has been computed by the FFT using the 
standard rectangular weighting function. A cursory comparison of this illustration 
with that of Fig. 9.7(b) leads to the conclusion that the time function consists of a 
single sinusoid. 

Now consider Fig. 9. lO(b) , where we have recomputed the FFT of the original 
time function but have used the Hanning weighting function. Note that a second 
sinusoidal component is clearly visible. We now conclude that the time function is 
composed of two sinusoids. Leakage resulting from the rectangular truncation func
tion almost completely obscures the second, smaller frequency component in Fig. 
9.1O(a). The detection of signals buried in noise is addressed in Sec. 14.3. 

Example 9.6 Dolph-Chebyshev Weighting Functions 

As discussed previously, low side lobes are achieved at the expense of main-lobe 
bandwidth or broadening. Even though the Hanning function is a weighting function 
that has low side lobes and is convenient to use, a weighting function that has better 
side-lobe characteristics is the Dolph-Chebyshev function. This window, Refs. [7] 
and [8], minimizes the bandwidth or smearing while forcing all side lobes to be below 
a specified level. For some FFT applications, the additional complexity of this 
weighting function may be warranted. 

The Dolph-Chebyshev weighting function can be calculated [8] from the 
relationship 

where 

( .) = N - 1 ~ (i - 2) (N - i) f.I. k+ I 
WN I N _ .,.,;.. k k + 1 I-' 

I k~O 

M = i - 2 

= N - i-

i ~ (N + 1)/2 

i ~ (N + 1)/2 

i ~ 1 or N (9.2) 
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and 

and 13 is the desired side-lobe level in dB. Figure 9.11 shows a BASIC program for 
computing WN(i). The required inputs are the number of weights N, (i.e., the number 
of data samples) and the desired side-lobe level (SSL) in decibels. SSL is input as 
a positive number. The logarithm function used in the program is the naturalloga-
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Figure 9.9 Example of applying the Hanning function to reduce leakage in com
putation of the FFf. 
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Figure 9.10 (a) Example signal obscured by side-lobe leakage, and (b) signal 
detection by application of the Hanning weighting function. 
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rithm. Exercise caution when computing Dolph-Chebyshev weights because of the 
precision required if N is large [13, 14]. 

When the number of data samples is to or larger, the 3-dB bandwidth of the 
main lobe is essentially independent of N and depends only on the side-lobe level. 
Figure 9.12(a) shows a plot of the increase in bandwidth as the side-lobe level pa
rameter varies. Hence, side lobes can be reduced to any desired value but with a 
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8500 REM: 
8510 REM: 
8520 REM: 
8530 REM: 
8540 REM: 

DOLPH-CHEBYSHEV WEIGHTING FUNCTION SUBROUTINE 
THE CALLING PROGRAM SHOULD DIMENSION 

8550 AN=N% 

THE WEIGHTING FUNCTION ARRAY W( 1%), THE NUMBER 
OF WEIGHTING FUNCTION VALUES N%, AND THE DESIRED 
SIDE-LOBE LEVEL IN DB SHOULD BE INITIALIZED. 

8560 N1%=(N%+1 )\2 
8570 S=10!A(SSL/20!) 
8580 A=2!*LOG(S+SQR(S*S-1 !))/AN-1!) 
8590 B=(EXP(A)-1! )*(EXP(A)-1!) 
8600 C=(EXP(A)+1! )*(EXP(Al+1!) 
8620 D=B/C 
8630 FOR 1%=2 TO N1% 
8640 AI=I% 
8650 11=1%-1 
8660 E=O! 
8670 FOR K%=1 TO 11 
8680 K1%=K%-1 
8690 AK=K% 
8700 G=1! 
8710 H=1! 
8720 IF (K%-1 )=0 THEN 8770 ELSE 8730 
8730 FOR J%=1 TO K1% 
8740 AJ=J% 
8750 G=G*(AI-1 !-AJ)/AJ 
8760 NEXT J% 
8770 FOR L%=1 TO K% 
8780 AL=L% 
8790 H=H*(AN-AI+1 !-AL)/AL 
8795 NEXT L% 
8800 E=E+G*H*(DAAK) 
8810 NEXT K% 
8820 W( 1%)=(AN-1! )*E/(AN-AI) 
8830 W(N%-I%+1 )=W( 1%) 
8840 NEXT 1% 
8850 W(N%)=1 ! 
8860 W(1 )=1! 
8870 RETURN 
8880 END 

Figure 9.11 Computer subroutine in BASIC for computing the Dolph-Chebyshev 
weighting function. 

corresponding increase in bandwidth. The normalized data plotted in Fig. 9. 12(a) is 
adequate to evalute the degree of increased bandwidth as a function of side-lobe 
level. Figure 9.12(b) illustrates Dolph-Chebyshev weighting functions for several 
choices of side-lobe levels. The rectangular and Hanning functions are also shown 
for comparison. 
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Figure 9.12 (a) Bandwidth vs. side-lobe level for the Dolph-Chebyshev weighting 
function, and (b) Dolph-Chebyshev frequency-domain functions for 40- and 60-
dB side-lobe levels. 
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The reader should not infer from the previous discussion that the FFT 
is of little utility for computing the Fourier transform of periodic functions. 
If you know the period, then you should take advantage of this knowledge 
by selecting the truncation interval equal to an integer multiple ofthe period. 
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If the period is unknown, then the FFT results computed with a Hanning 
weighting function are as good an estimate of the frequency function as any 
other estimate. The only reason one questions the results is if truth is known. 
If the experimenter believes that the time function is periodic, then a succes
sion of FFTs with sequentially longer truncation intervals should identify 
the period. A catalog and comparison of FFT weighting functions is given 
in Refs. [9], [10], and [1 I] . 

9.3 FFT ALGORITHMS FOR REAL DATA 

In applying the FFT, we often consider only real functions of time, whereas 
the frequency functions are, in general, complex. Thus, a single computer 
program written to determine both the discrete transform and its inverse is 
written such that a complex time waveform is assumed: 

1 N-I 
H(n) = - ~ [hr(k) + jh;(k)]e-j2-rrnkIN 

N k=O 
(9.3) 

This follows because the alternate inversion formula of Eq. (6.33) is given 
by 

1 [N-I J* h(k) = - ~ [HAn) + jH;(n)]*e -j2-rrnkIN 

N n=O 
(9.4) 

and because both Eqs. (9.3) and (9.4) contain the common factor e -j2-rrnkIN, 

then a single computer program can be used to compute both the discrete 
transform and its inverse. 

If the time function being considered is real, we must set to zero the 
imaginary part of the complex time function in Eq. (9.3). This approach is 
inefficient in that the computer program still performs the multiplications 
involvingjh;(k) in Eq. (9.4) even thoughjh;(k) is zero. 

In this section, we develop two techniques for using this imaginary 
part of the complex time function to more efficiently compute the FFT of 
real functions. 

FFT of Two Real Functions Simultaneously 

It is desired to compute the discrete Fourier transform of the real time 
functions h(k) and g(k) from the complex function 

y(k) = h(k) + jg(k) (9.5) 
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That is, y(k) is constructed to be the sum of two real functions, where one 
of these real functions is taken to be imaginary. From the linearity property 
of Eq. (6.25), the discrete Fourier transform of y(k) is given by 

Y(n) = H(n) + jG(n) 

= [Hr(n + jH;(n)] + j[GAn) + jG;(n)] 

= [Hr(n) - G;(n)] + j[H;(n) + Gr(n)] 

= R(n) + jl(n) 

(9.6) 

By means of the frequency-domain equivalent of Eq. (6.39), we decompose 
both R(n), the real part of Y(n) , and I(n), the imaginary part of Y(n), into 
even and odd components: 

Y(n) = (R;n) + R(N2- n)) + (R;n) _ R(N2- n)) 

. (/(n) I(N - n)) . (/(n) I(N - n)) 
+j 2 + 2 +j 2 - 2 

From Eqs. (6.45) and (6.46), 

H(n) = Re(n) + j1o(n) 

= (R(n) R(N - n)) 
2 + 2 

Similarly, from Eqs. (6.47) and (6.48), 

jG(n) = Ro(n) + j1e(n) 

or 

G(n) = 1 e(n) - jRo(n) 

. (/(n) I(N - n)) + j - - --'-----'-
2 2 

= (/~) + I(N 2- n)) _j(R;n) _ R(N
2
- n)) 

(9.7) 

(9.8) 

(9.9) 

Thus, if the real and imaginary parts of the discrete transform of a complex 
time function are decomposed according to Eqs. (9.8) and (9.9), then the 
simultaneous discrete transform of two real time functions can be accom
plished. This procedure results in a two-series capability with only the re
quirement for sorting the results. For ease of reference, the necessary steps 
to simultaneously compute the FFT of two real functions are listed in Fig. 
9.13. Note that Step 4 is written in terms of R(N) and I(N). By periodicity, 
we know that R(N) = R(O) and I(N) = 1(0). 

A BASIC computer program according to the procedure defined in 
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Fig. 9.13 is listed in Fig. 9.14. The two-input real data arrays are 
XIREAL(I%) and X2REAL(I%), where each is N points. Parameters N% 
and NU% should be initialized in the main program; N% = N. Transform 
results for the real data array XIREAL(I%) are returned from the subroutine 
with the real part of the transform stored in XIREAL(I%) and the imaginary 
part of the transform stored in XlIMAG(I%). Similarly, the real part of the 
transform of the X2REAL(I%) data array is returned in array X2REAL(I%) 
and the imaginary part in X2IMAG(I%). The subroutine completely sorts 
the results so that the output is in exactly the same form as two independent 
FFTs. The program uses the FFT subroutine listed in Fig. 8.7 and hence 
XREAL(I%) and XIMAG(I%) must be dimensioned. For clarity of presen
tation, we have utilized additional arrays that are not required if memory is 

1. Functions h(k) and g(k) are real k = 0, 1, ... , N - 1 
2. Form the complex function: 

y(k) = h(k) + jg(k) 

3. Compute 

k = 0, 1, ... , N - 1 

N-1 
Y(n) = L y(k)e-j2TmklN 

k=O 

= R(n) + jl(n) n = 0, 1, ... , N - 1 

where R(n) and I(n) are the real and imaginary parts of Y(n), 
respectively. 

4. Compute 

H( ) = [R(n) R(N - n)] . [/(n) _ I(N - n)] 
n 2 + 2 +} 2 2 

G(n) = [/(;) + I(N; n)] _ j [R~n) _ R(N 2- n)] 

n = 0, 1, ... , N - 1 

where R(N) = R(O) , I(N) = 1(0), and H(n) and G(n) are the 
discrete transforms of h(k) and g(k), respectively. 

5. Scale the results by the sample interval T. 

Figure 9.13 Computation procedure for simultaneous FFT of two real functions. 
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11000 REM: SUBROUTINE FOR SIMULTANEOUS FFT OF TWO REAL FUNCTIONS 
11002 REM: STORED IN ARRAYS X1REAL( 1%) AND X2REAL( 1%). RESULTS ARE 
11004 REM: RETURNED IN ARRAYS X1REAL( 1%). Xl IMAG( 1%), X2REAL( 1%), AND 
11006 REM: X2IMAG( 1%). THESE ARRAYS AND XREAL( 1%), XIMAG( 1%) MUST BE 
11008 REM: DIMENSIONED IN THE MAIN PROGRAM. N% AND NU% MUST BE 
11010 REM: INITIALIZED. THIS PROGRAM CALLS THE FFT SUBROUTINE 
11012 REM: BEGINNING AT LINE 10000 (FIG. 8-7). 
11014 REM: 
11020 FOR 1%=1 TO N% 
11030 XREAL( 1%)=X1REAL( 1%) 
11040 XIMAG( 1%)=X2REAL( 1%) 
11050 NEXT 1% 
11060 GOSUB 10000 
11070 N2%=N%/2 
11080 
11090 

Xl REAL ( 1 ) =XREAL ( 1 ) 
Xl IMAG( 1) =0 

11100 X2REAL<1 )=XIMAG(1) 
11110 X21 MAG ( 1 ) =0 
11120 FOR 1%=2 TO N% 
11130 
11140 

X1REAL( I%)=(XREAL( 1%)+XREAL(N%+2-1%))/2 
Xl IMAG( I%)=(XIMAG( 1%)-XIMAG(N%+2-1%))/2 

11150 X2REAL( I%)=(XIMAG( 1%)+XIMAG(N%+2-1%))/2 
11160 X2IMAG( I%)=-(XREAL( 1%)-XREAL(N%+2-1%))/2 
11170 NEXT 1% 
11180 RETURN 
11190 END 

Figure 9.14 Computer subroutine in BASIC for simultaneous FFT of two real functions. 

a constraint. Output results must be scaled by the sample interval T to obtain 
equivalence to the continuous Fourier transform. 

Transform of 2 N Samples with an N-Sample 
Transform 

The imaginary part of the complex time function can also be used to 
compute more efficiently the discrete transform of a single real time function. 
Consider a function x(k) that is described by 2N samples. It is desired to 
compute the discrete transform of this function using Eq. (9.3). That is, we 
wish to break the 2N-point function x(k) into two N-sample functions. Func
tion x(k) cannot simply be divided in half; instead, we divide x(k) as follows: 

h(k) = x(2k) 
}k = 0, 1, ... , N - 1 (9.10) 

g(k) = x(2k + 1) 

That is, function h(k) is equal to the even-numbered samples of x(k), and 
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g(k) is equal to the odd-numbered samples. Eq. (9.3) can then be written as 
2N-J 

X(n) = ~ x(k)e - J2-rrnk12N 
k=O 

N-J N-J 
= ~ x(2k)e -J2-rrn(2k)/2N + ~ x(2k + l)e -J2-rrn(2k+ 1)/2N 

k=O k=O 

N-J N-J 
= ~ x(2k)e - J2-rrnkl N + e - J-rrnl N ~ x(2k + l)e - J2-rrnkl N (9. 11) 

k=O k=O 

N-J N-J 
= ~ h(k)e -J2-rrnkIN + e -J-rrnIN ~ g(k)e -J2-rrnkIN 

k=O k=O 

= H(n) + e -J-rrnIN G(n) 

To efficiently compute H(n) and G(n), use the previously discussed tech
nique. Let 

y(k) = h(k) + jg(k) 

then 

Y(n) = R(n) + jI(n) 

From Eqs. (9.8) and (9.9), 

H(n) = Re(n) + jIo(n) 

G(n) = IAn) - jRo(n) 

Substitution of Eq. (9.13) into Eq. (9.11) yields 

X(n) = Re(n) + jIo(n) + e-J-rrnIN[IAn) - jRo(n)] 

[Re(n) + cos (;)IAn) - sin (;)Ro(n)] 

+ j[Io(n) - sin (;)Ie(n) - cos (;)Ro(n)] 

= Xr(n) + jXi(n) 

Hence, the real part of the 2N-sample function x(k) is 

X ( ) = [R(n) R(N - n)] (1Tn) [I(n) I(N - n)] 
r n 2 + 2 + cos N 2 + 2 

- sin (;) [R;n) - R(N2- n)] 

(9.12) 

(9.13) 

(9.14) 

(9.15) 
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1. Function x( k) is real k = D. 1 •.... 2N - 1 
2. Divide x(k) into two functions: 

h(k) = x(2k) } 
g(k) = x(2k + 1) k = D. 1 •...• N - 1 

3. Form the complex function: 

y(k) = h(k) + jg(k) 

4. Compute 

k = D. 1 •...• N - 1 

N-l 
Yen) = L y(k)e- J2'1fnklN 

k=O 

= R(n) + jl(n) n = D. 1 •...• N - 1 

where R(n) and I(n) are the real and imaginary parts of Y(n). 
respectively. 

5. Compute 

X( ) = [R(n) R(N - n)] (TI'n) [/(n) I(N - n)] 
r n 2 + 2 + cos N 2 + 2 

_ sin (TI'~) [R~n) _ R(N2- n)] 

n = D.1 •. ..• N - 1 

X;(n) = [/(;) _/(N; n)] _ sin (TI'~) [/(;) + I(N; n)] 

_ cos (~) [R~n) _ R(N2- n)] 

n = D. 1 •...• N - 1 

where R(N) = R(D). I(N) = I(D). X,{n) and X,{n) are the real 
and imaginary parts of the 2N = point discrete transform 
of x(k). respectively. 

6. Scale the results by the sample interval T. 

Figure 9.15 Computation procedure for the FFT of a 2N-point function by means 
of aN-point FFT. 

193 
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12000 REM: 
12002 REM: 
12004 REM: 
12006 REM: 
12008 REM: 
12010 REM: 

SUBROUTINE FOR EFFICIENT COMPUTATION OF THE FFT OF REAL 
FUNCTIONS. THE CALLING PROGRAM SHOULD DIMENSION XREAL( 1%) 
AND XIMAG( 1%) AND THE COMPUTATION ARRAYS X1REAL( 1%) AND 
Xl IMAG( 1%). N%=2N AND NU% MUST BE INITIALIZED. 
THIS PROGRAM CALLS THE FFT SUBROUTINE BEGINNING AT 
LINE 10000 (FIG. 8-7). 

12012 REM: 
12020 N%=N%l2 
12030 NU%=NU%-l 
12040 REM: PLACE ODD NUMBERED SAMPLES IN XREAL( ), EVEN IN XIMAG( ). 
12050 FOR 1%=1 TO N% 
12060 X1REAL( 1%)=XREAL(2*1%-1) 
12070 Xl IMAG( 1%)=XREAL(2*1%) 
12080 NEXT 1% 
12090 FOR 1%=1 TO N% 
12100 XREAL( 1%)=X1REAL( 1%) 
12110 XIMAG( 1%)=Xl IMAG( 1%) 
12120 
12130 
12140 
12150 
12160 

NEXT 1% 
REM: COMPUTE THE 

GOSUB 10000 
ARG=3.145926#/N% 
INIT=ARG 

FFT. 

12170 FOR 1%=2 TO N% 
12180 S=SIN(ARG) 
12190 C=COS(ARG) 
12200 
12210 
12220 
12230 
12240 
12250 
12260 
12270 
12280 
12290 
12300 
12310 
12320 
12330 
12340 
12350 
12360 
12370 
12380 
12390 
12400 
12410 
12420 
12430 

Al=(XREAL( 1%)+XREAL(N%+2-1%))/2 
A2=(XREAL( 1%)-XREAL(N%+2-1%))/2 
Bl=(XIMAG(1%)+XIMAG(N%+2-1%))/2 
B2=(XIMAG( 1%)-XIMAG(N%+2-1%))/2 

X1REAL( 1%)=Al+C*Bl-S*A2 
Xl IMAG( 1%)=B2-S*Bl-C*A2 
ARG=ARG+INIT 

NEXT 1% 
XREAL(N%+l )=XREAL(l )-XIMAG(l) 
XIMAG(N%+l )=o! 
XREAL(l )=XREAL(l )+XIMAG(l) 
XIMAG(l )=0 
XIMAG(N%+l )=0 

FOR 1%=2 TO N% 
XREAL( 1%)=X1REAL( 1%) 
XIMAG( 1%)=XlIMAG( 1%) 
K%=2*N% 
XREAL(K%+2-1%)=XREAL( 1%) 
XIMAG(K%+2-1%)=-XIMAG( 1%) 

NEXT 1% 
N%=2*+% 
NU%=NU%+l 

RETURN 
END 

Figure 9.16 Computer subroutine in BASIC for the FFT of 2N data samples with aN-point 
FFT. 
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and, similarly, the imaginary part is 

x.( ) = [/(n) _ I(N - n)] _ . (1Tn) [/(n) I(N - n)] 
In 2 2 Sin N 2. + 2 

(9.16) 

- cos (;) [R;n) - R(N2- n)] 

Thus, the imaginary part of the complex time function can be used 
advantageously to compute the transform of a function defined by 2N sam
ples by using a discrete transform that sums only over N values. We normally 
speak of this computation as performing a 2N-point transform by means of 
a N-point transform. For reference, an outline of the computation approach 
is given in Fig. 9.15. Note that Step 5 is written in terms of R(N) and I(N). 
By periodicity, R(N) = R(O) and I(N) = 1(0). 

A BASIC computer program that implements the outline of Fig. 9.15 
is listed in Fig. 9.16. The 2N-point real input function is stored in 
XREAL(I%). The main program should initialize N% and NU%, where N% 
= 2N. For clarity of presentation, dummy array DREAL(I%) and 
DIMAG(I%) are used. All arrays should be of dimension 2N. Because this 
program cuts FFT computation time approximately in half, readers with a 
personal computer should find it very useful. Output results must be scaled 
by the sample interval T to obtain equivalence to the continuous Fourier 
transform. 

9.4 INVERSE FOURIER TRANSFORM APPLICATIONS 

Assume that we are given the continuous real and imaginary frequency func
tions considered in Figs. 9.1(b) and (c) and that we wish to determine the 
corresponding time function by means of the inverse FFT: 

N-\ 

h(kT) = Ilf L [R(nllf)] + j/(nllf)e j2-rrnkIN 

n=O 

k = 0,1, ... ,N - (9.17) 

where Ilf is the frequency sample interval frequency. Assume N = 32 and 
Ilf = 1/8. 

Because we know that R(f), the real part of the complex frequency 
function, must be an even function, then we fold R(f) about the frequency 
f = 2.0, which corresponds to the sample point n = N12. As shown in Fig. 
9.17(a), we simply sample the frequency function up to the point n = NI2 
and then fold these values about n = N12 to obtain the remaining samples. 

In Figure 9. 17(b), we illustrate the method for determining the N sam
ples of the imaginary part of the frequency function. Because the imaginary 
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Figure 9.17 Example of the inverse Fourier transform computation via the FFT. 

frequency function is odd, we must not only fold about the sample value NI 
2, but also flip the results. To preserve symmetry, we set the sample at n 

NI2 to zero. 
Computation of Eq. (9.17) with the sampled function illustrated in Figs. 
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Figure 9.17 (continued) 
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9. 17(a) and (b) yields the inverse discrete Fourier transform. The result is 
a complex function whose imaginary part is approx!mately zero and whose 
real part is as shown in Fig. 9.17(c). We note that at k = 0, the result is 
approximately equal to the correct mid value and reasonable agreement is 
obtained for all except the results for k large. Improvement can be obtained 
by reducing AI and increasing N. 

Note that there can exist a requirement for a frequency-domain weight
ing function analogous to the previously discussed time-domain weighting 
function. The slightly oscillating results of Fig. 9.17(c) occur because the 
imaginary frequency function has been truncated. This truncation effect can 
be reduced by increasing N, the number of data points, or by using a weight
ing function. To use the Hanning weighting function in this example, apply 
it so that it is unity at I = 0 Hz, zero at I = 2 Hz, and returns to unity for 
the negative frequencies. 

The key to using the inverse FFT for obtaining an approximation to 
continuous results is to specify the sampled frequency functions correctly. 
Figures 9. 17(a) and (b) illustrate this correct method. One should observe 
the scale factor AI, which is required to give a correct approximation to 
continuous inverse Fourier transform results. 

It is not necessary to write a special FFT program to compute the 
inverse transform relation of Eq. (9.17). Rather, we use a direct transform 
FFT algorithm and employ the alternate inversion formula of Eq. (6.33). To 
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Figure 9.18 Example illustrating time-domain interpolation using the FFT. 
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use this relationship, we first conjugate the complex frequency function, that 
is, the imaginary sampled function illustrated in Fig. 9 .17(b) is multiplied by 
-I. Because the resulting time function is real, 

N-J 

h(kD = At L [R(nAf) + j( -l)/(nAf)]e -j2TrnklN (9.18) 
n=O 

which yields the time function illustrated in Fig. 9.17(c). 

Example 9.7 FFT Interpolation 

The FFT is a convenient tool for interpolating a time function. Consider the sampled 
time function illustrated in Fig. 9.18(a). Because the small number of samples does 
not give a good indication of the shape of the curve, interpolation is desired. 

First, we compute the FFT of the sampled time function shown in Fig. 9. 18(a). 
The frequency function illustrated in Fig. 9.18(b) is purely real because the time 
function is even. We then add zeros to the frequency function. We do this by sep
arating the frequency function at n = NI2 and adding zeros, as illustrated in Fig. 
9.18(c). We next compute the inverse Fourier transform of this stretched frequency 
function. The resulting time function is illustrated in Fig. 9.18(d). As shown, the 
result of adding zeros in the frequency domain is to interpolate the sampled time 
function. 

9.5 LAPLACE TRANSFORM APPLICATIONS 

The analytic methods for performing the inverse Laplace transform of an 
irrational transfer function are complicated and incomplete. Many numerical 
methods are available, but the simplest to implement is that using the FFT. 
In this section, we address the fundamentals of FFT Laplace transform 
inversion. 

The Laplace transform of a real function of time is given by 

G(s) = Loo g(t)e -sf dt (9.19) 

The Fourier and Laplace transforms are very closely related. In general, 
the Fourier transform is a function of the real variable t and the Laplace 
transform is a function of the complex variable s. If we let s = c + j27ft, 
then Eq. (9.19) becomes 

G(c + j27ft) = Loo [g(t)e -Cf]e -j2Trff dt (9.20) 

If g(t) = 0 for t < 0, then the lower limit of Eq. (9.19) can be replaced by 
- 00 and Eq. (9.20) becomes the Fourier transform relationship. Hence, the 
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Laplace transform can be cast in terms of the Fourier transform: 

g(t)e -ct ~ G(e + j2'ITf) (9.21) 

From Eq. (9.21), we can formulate a procedure for inversion of the 
Laplace transform. First, rewrite the transform function G(s) by replacing 
the variable s by e + j2'ITJ. This inversion yields the time function g(t)e -ct. 
Multiplication of this function by e ct yields the desired function get). Recall 
from Laplace transform theory that the parameter e must be chosen larger 
than the real part of the poles for the transform function G(s). 

Although e can be chosen to be any value larger than the real part of 
the poles of G(x), it should be noted that the effect of a large value of e is 
to attenuate get) and thereby reduce the effects of time-domain aliasing. 
However, if e is chosen too large, then the product [g(t)e-ct]e ct for large t 
results in errors due to the rounding errors that occur in the computation of 
g(t)e -ct. Cooley [3] has determined a procedure for optimally choosing e 
to balance aliasing and rounding errors. Unless one is overly concerned with 
accuracy (1 part in 104 ), then an optimum choice for e is not warranted. 

Example 9.8 Inverse Laplace Transform: C = 0 

To illustrate the computation of the inverse Laplace transform, consider the transfer 
function G(s) = l/(s + 1). Replace parameter s by c + j2'ITf to obtain G(c + j2'ITf) 
= 1/(j2'ITf + 1 + c). Because the pole is located at s = - I, then c can be chosen 
as any value greater than - I, say O. Thus, 

G(c + j2:rrf) = G(j2'ITf) = 1/(j2:rrf + 1) 

= 1/[(2'ITf)2 + I] - /l7rf/[(27rf)2 + I] 
(9.22) 

which is exactly the example considered in Sec. 9.4. The procedure for computing 
the inverse Fourier transform of Eq. (9.20) using the FFT is then identical to those 
described in the previous section and Figs. 9.17(a) to (c) apply. The time function 
of Fig. 9.17( c) is g(t)e - ct, but because c = 0, then e - ct = 1 and it is not necessary 
to mUltiply by ect. The desired time function is then given by Fig. 9.17(c). 

Example 9.9 Inverse Laplace Transform: C = 1 

Consider G(s) = I/s. The pole is located at s = 0 and, hence, c must be chosen 
greater than zero. Let c = l. Replacing s by 1 + j2'ITf yields G(l + j2mf) = 1/(j2'ITf 
+ I), which is the frequency function considered in Eq. (9.22). Therefore, the inverse 
Fourier transform yields the time function illustrated in Fig. 9.17(c). To obtain the 
desired function g(t), we multiply Fig. 9.17(c) by ect = et ; the result is shown in 
Fig. 9.19. The result approximates the theoretically correct step function. Recall 
from Sec. 9.4 that the error in this computation is due to frequency-domain trun
cation. Note that Fig. 9.19 is periodic, as required by the FFT. One must take this 
into account in interpreting inverse Laplace transform results. 
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9.1 By means of the FFT, compute the amplitUde spectrum I H(f) I and phase aU) 
for the functions illustrated in Fig. 2.12. 

9.2 Let h(t) = e- t. Sample h(t) with T = 0.25. Compute the FFT of h(kT) for N 
= 8, 16,32, and 64. Compare these results and explain the differences. Repeat 
for T = 0.1 and T = 1.0 and discuss the results. 

9.3 Let h(t) = cos(2'ITt). Sample h(t) with T = 'IT/8. Compute the FFT for N = 

16. Repeat for N = 'IT/9. Compare these results with those of Figs. 9.6 and 9.7. 
9.4 Consider h(t) illustrated in Fig. 6.7(a). Let To = 1.0. Sample h(t) with T = 0.1 

and N = 16. Compute the FFT. Repeat for T = 0.2 and N = 4, and for T = 

0.01 and N = 128. Compare and explain these results. 
9.5 Let h(t) = te-t, t > O. Compute the FFT. Give reasons for your choice of T 

andN. 
9.6 Let h(k) be defined according to Problem 9.5. Let 

g(k) = cos(2'ITk/1024) k = 0, ... , 1023 

Simultaneously, compute the discrete Fourier transform of h(k) and g(k) using 
the procedure described in Fig. 9.13. 
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9.7 Demonstrate the procedure illustrated in Fig. 9.15 on the function defined in 
Problem 9.5. Let 2N = 1024. 

9.8 Find the inverse FFf of the following functions: 

( ) [sin(21r )f) f 
a 2Trf 

I 
(b) (l + j21rf)2 

9.9 By means of the FFT, compute the inverse Laplace transform of the following 
functions. The theoretical inverse is given as a means for checking your answer. 

(a) G(s) = e- s g(t) = 0; 0 < t < I 
S2 = t; t > I 

(b) G(s) = e--rrs g(t) = 0; ~ < t < Tr 

S2 + I = - sm(t); t > Tr 

(c) G(s) = l/[(s + 4)2 + l] g(t) = e -1 sin(t); t > 0 
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10 

FFT CONVOLUTION 

AND CORRELATION 

FFT applications such as matched filtering, digital signal processing, simu
lation, systems analysis, and time-interval measurements are based on an 
implementation of the discrete convolution or correlation integral. In gen
eral, a straightforward computation of the discrete integral relationships is 
not practical because of the excessive number of required mUltiplications. 
However, as discussed in Chapter 6, both integrals can be computed by 
means of the discrete Fourier transform. With the tremendous increase in 
computational speed that can be achieved using the FFT, it is more efficient 
to compute the convolution and correlation integrals by means of the discrete 
Fourier transform. 

In this chapter, we develop the techniques for applying the FFT to 
high-speed convolution and correlation. 

10.1 FFT CONVOLUTION OF FINITE·DURATION 
WAVEFORMS 

The discrete convolution relationship is given by Eq. (7.1) as 
N-] 

y(k) = L x(i)h(k - i) 
;=0 

( 10.1) 

where both x(k) and h(k) are periodic functions with period N. As discussed 
in Chapter 7, discrete convolution, if correctly performed, produces a replica 
of the continuous convolution, provided that both the functions x(t) and h(t) 

204 
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are of finite duration. We now extend that discussion to include efficient 
computation by means of the FFT. 

Consider the finite-duration, or aperiodic, waveforms x(t) and h(t) il
lustrated in Fig. 1O.1(a). Continuous convolution of these functions is also 
shown. By means of discrete convolution, it is desired to produce a replica 
of the continuous convolution. Recall from Chapter 7 that discrete convo
lution requires that we sample both x(t) and h(t) and form periodic functions 
with period N, as illustrated in Fig. 1O.1(b). The resulting discrete convo
lution [Fig. 1O.1(c)] is periodic; however, each period is a replica of the 
desired finite duration, or aperiodic waveform. Scaling constant T (sample 
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Figure 10.1 Example illustrating inefficient discrete convolution. 
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period) has been introduced to obtain results comparable with continuous 
convolution. Note that because both x(t) and h(t) are shifted from the origin, 
a large N is required to produce a period sufficiently large to eliminate the 
overlap or end effect described in Chapter 7. Computationally, the discrete 
convolution illustrated in Fig. 1O.1(c) is very inefficient because of the large 
number of zeros produced in the interval [0, a + b]. To perform the discrete 
convolution more efficiently, we simply restructure the data. 

Restructuring the Data 

As illustrated in Fig. 10.2, we shift each sampled function [Fig. 1O.1(b)] 
to the origin; from Eq. (7.6), we choose the period N > P + Q - 1 to 
eliminate overlap effects. Because we ultimately desire to use the FFT to 
perform the convolution, we also require that N = 2"'1, where 'Y is integer 
valued; we assume that a radix-2 algorithm is used. Our results are easily 
extended for the case of other algorithms. 

Functions x(k) and h(k) are required to have a period N satisfying 

N>P+Q-l (10.2) 
N = 2"'1 'Y integer valued 

Discrete convolution for this choice of N is illustrated in Fig. 1O.2(b); the 
results differ from that of Fig. 10.1(c) only in a shift of origin. But this shift 
is known a priori. From Fig. 1O.1(a), the shift of the convolutiony(t) is simply 
the sum of the shifts of the functions being convolved. Consequently, no 
information is lost if we shift each function to the origin prior to convolution. 

To compute the identical waveform of Fig. 1O.2(b) by means of the 

x(k) h(k) 

1 ............ . 

1 2" ............ . 

k k 

(a) 

y(k) 

.......................... 

k 

(b) 

Figure 10.2 Discrete convolution of restructured data. 
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FFT, we first shift both x(t) and h(t) to the origin. Let the shifts of x(t) and 
h(t) be a and b, respectively. Both functions are then sampled. Next, N is 
chosen to satisfy Eq. (10.2). The resulting sampled periodic functions are 
defined by the relationships 

x(k) = x(kT + a) 

x(k) = 0 
h(k) = h(kT + b) 

h(k) = 0 

k = 0, 1, ... , P - 1 
k = P, P + 1, ... , N - 1 
k = 0, 1, ... , Q - 1 
k = Q, Q + 1, ... , N - 1 

(10.3) 

The same notation is used to emphasize that our discussions should assume 
only sampled periodic functions shifted to the origin. We now compute the 
discrete convolution by means of the discrete convolution theorem of Eq. 
(6.50). The discrete Fourier transforms of x(k) and h(k) are computed: 

Next, the product 

N-\ 

X(n) = L x(k)e -j2-rrnkIN 
k=O 

N-\ 

H(n) = L h(k)e -j2-rrnkIN 
k=O 

Y(n) = X(n)H(n) 

(10.4) 

(10.5) 

(10.6) 

is formed, and finally we compute the inverse discrete transform of Y(n) and 
obtain the discrete convolution y(k): 

1 N-\ 

y(k) = - L Y(n)ej2TrnkIN 
N n=O 

(10.7) 

Note that the single discrete convolution of Eq. (10.1) has now been replaced 
by Eqs. (10.4) to (10.7). This gives rise to the term the long way around. 
However, because of the computing efficiency of the FFT algorithm, these 
four equations define a shortcut by the long way around. 

A step-by-step computation procedure for applying the FFT to con
volution of discrete functions is given in Fig. 10.3. Note that we have used 
the alternate inversion formula of Eq. (6.33) in Step 7 and scaled by liN. 
In Step 8, we scale by the sample interval Tfor comparison with continuous 
results. 

A BASIC computer program following the procedure of Fig. 10.3 is 
shown in Fig. 10.4. The two real functions to be convolved are stored in 
arrays XIREAL(I%) and X2REAL(I%). These arrays, X lIMAG(I%) , 
X2IMAG(I%), XREAL(I%), and XIMAG(I%), should be dimensioned by 
the number of samples N%. N% and NU% must be initialized. We use the 
FFT subroutine starting at line 10000, which is listed in Fig. 8.7. The reader 
is responsible for implementing Steps 2 to 4 to eliminate overlap effects. 
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1. Let x( f) and h( f) be finite-length functions shifted from the 
origin by a and b, respectively. 

2. Shift x(f) and h(t) to the origin and sample 

x(k) = x(kT + a) 

h(k) = h(kT + b) 

k = 0,1, ... , P - 1 

k = 0,1, ... , Q - 1 

3. Choose N to satisfy the relationships 

N~P+Q-1 

N= 2'1 'Y integer valued 

where P is the number of samples defining x(f), and Q is 
the number of samples defining h( f). 

4. Augment with zeros the sampled functions of Step 2: 

x(k) = 0 

h(k) = 0 

k = P, P + 1 •...• N - 1 

k = Q, Q + 1 •...• N - 1 

5. Compute the FFT of x(k) and h(k): 

N-l 
X(n) = L x(k)e- j2",nklN 

k=O 

N-l 
H(n) = L h(k)e- j2",nklN 

k=O 

6. Compute the product 

Yen) = X(n)H(n) 

7. Compute the inverse FFT using the forward FFT (note scal
ing by lIN): 

y( k) = L .!. r( n) e - j2",nklN 
N-l ( ) 

n=O N 
8. Scale the results by the sample interval T. 

Figure 10.3 Computation procedure for FFf convolution of finite-length functions. 

Convolution results are returned stored in XREAL(I%) and must be scaled 
by the sample interval T to obtain results equivalent to continuous convo
lution. XIMAG(I%) results should be approximately zero. Note that the 
factor liN, shown in Step 7, is incorporated in the program. 
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13000 REM: 
13002 REM: 

SUBROUTINE FOR CONVOLVING TWO REAL FUNCTIONS STORED 

13004 
13006 
13008 
13010 
13012 
13020 
13030 
13040 
13050 
13060 
13070 
13080 
13090 
13100 

REM: 
REM: 
REM: 
REM: 
REM: 

IN ARRAYS X1REAL( I~) AND X2REAL( I~). N~ AND NU~ MUST BE 
INITIALIZED. DIMENSION X1REAL( I~) ,Xl IMAG( I~) ,X2REAL( I~), 
X2IMAG( I~),XREAL( I~) AND XIMAG( I~). USER IS RESPONSIBLE FOR 
PREVENTING END EFFECTS. CONVOLUTION RESULTS ARE 
RETURNED IN ARRAY XREAL( I~). THIS PROGRAM CALL THE FFT 
SUBROUTINE STARTING AT LINE 10000 (FIG. 8-7). 

FOR 1~=1 TO N~ 
XREAL( 1~)mX1REAL( I~) 
XIMAG( I~)-O 

NEXT I~ 

GOSUB 10000 
FOR 1~=1 TO N~ 

X1REAL( I~)=XREAL( I~) 
XlIMAG( I~)=XIMAG( I~) 
XREAL( 1~)=X2REAL( I~) 

13110 XIMAG(I~)=O 

13120 NEXT I~ 

13130 GOSUB 10000 
13140 FOR 1~=1 TO N~ 
13150 X2REAL( I~)=XREAL(I~) 
13160 X2IMAG( I~)=XIMAG(I~) 
13170 XREAL( 1~)-(X1REAL( 1~)*X2REAL( I~)-Xl IMAG( 1~)*X2IMAG( I~) )/N~ 
13180 XIMAG( I )--(X1REAL( 1~)*X2IMAG( 1~)+Xl IMAG( 1~)*X2REAL( I~) )/N~ 
13190 NEXT I~ 

13200 GOSUB 10000 
13210 RETURN 
13220 END 

Figure 10.4 BASIC subroutine for FFf convolution. 

Example 10.1 FFT Convolution 

The application of the FFT to convolution computation is illustrated in Fig. 10.5. 
The sampled function x(kT), with N = 32, is shown in Fig. lO.5(a). Results of ap
plying Eq. (10.4) using the FFT is also shown in Fig. 1O.5(a). Note that FFT results 
are complex and we show a magnitude function. The sampled function h(kn and 
its FFT as computed from Eq. (10.5) are shown in Fig. 1O.5(b). Because P = 16 and 
Q = 16, then N = 32 > P + Q - I and there is no overlap. 

We next form the product frequency function of Eq. (10.6). This result is shown 
in Fig, 1O.5(c) in magnitude form. This complex frequency function is input to the 
inverse FFT, Eq. (10.7), or is conjugated and input to the forward FFT (Step 7, Fig. 
(10.3». All results have been scaled to approximate continuous results. 

Computational Efficiency of FFT Convolution 

Evaluation of the N samples of the convolution result y(k) by means 
of Eq. (10.1) requires a computation time proportional to N 2 , the number 
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Figure 10.5 Example convolution using the FFT. 

Chap. 10 

n 

n 

n 

of multiplications. From Sec. 8.2, the computation time of the FFT is pro
portional to N log2 N; computation time of Eqs. (10.4) to (10.6) is then 
proportional to 3N log2 N and the computation time of Eq. (10.7) is pro
portional to N. It is generally faster to use the FFT and Eqs. (10.4) through 
(10.7) to compute the discrete convolution rather than computing Eq. (10.1) 
directly. 

Exactly how much faster the FFT approach is than the conventional 
approach depends not only on the number of points but also on the details 
of the FFT and convolution programs being employed. To indicate the point 
at which FFT convolution is faster and the time savings that can be obtained 
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by means of FFT convolution, we have observed as a function of N the time 
required to compute Eq. (10.1) by both the direct and FFT approaches. 
Results of this simulation are given in Table 10.1. As shown, with our com
puter programs, it is faster to employ the FFT for convolution if N exceeds 
64. In Sec. 10.3, we describe a technique for reducing the FFT computing 
time by an additional factor of two; as a result, the breakeven point is for 
N = 32. 

TABLE 10.1 Computing Times (Seconds) 

N Direct Method FFT Method Speed Factor 

16 0.0008 0.003 0.27 
32 0.003 0.007 0.43 
64 0.012 0.015 0.8 

128 0.047 0.033 1.4 
256 0.19 0.073 2.6 
512 0.76 0.16 4.7 

1024 2.7 0.36 7.5 
2048 11.0 0.78 14.1 
4096 43.7 1.68 26.0 

10.2 FFT CONVOLUTION OF INFINITE- AND FINITE
DURATION WAVEFORMS 

We have discussed to this point only the class of functions for which both 
x(t) and h(t) are of finite duration. Further, we have assumed that N = 2'Y 
was sufficiently small so that the number of samples did not exceed our 
computer memory. When either of these two assumptions is false, it is nec
essary to use the concept of sectioning. 

Consider the waveforms x(t), h(t), and their convolution y(t), as il
lustrated in Fig. 10.6. We assume that x(t) is of infinite duration or that the 
number of samples representing x(t) exceeds the memory of the computer. 
As a result, it is necessary to decompose x(t) into sections and compute the 
discrete convolution as many smaller convolutions. Let NT be the time 
duration of each section of x(t) to be considered; these sections are illustrated 
in Fig. 1O.6(a). As shown in Fig. 1O.7(a), we form the periodic sampled 
function x(k), where a period is defined by the first section of x(t); h(t) is 
sampled and zeros are added to obtain the same period. Convolution y(k) 
of these functions is also illustrated in Fig. 1O.7(a). Note that we do not show 
the first Q - 1 points of the discrete convolution; these samples are incorrect 
because of the end effect. Recall from Sec. 7.3 for h(k) defined by Q samples 
that the first Q - 1 samples of y(k) have no relationship to the desired 
continuous convolution and should be discarded. 

In Fig. 1O.7(b), we illustrate the discrete convolution of the second 
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x(t) 

NT NT NT 

Ca) 

'p . 
t 

yCt) 
Cb) 

, , 

Ce) 

Figure 10.6 Example convolution of infinite- and a finite-duration waveforms. 

section of duration NT illustrated in Fig. 1O.6(a). As described in Sec. 10.1, 
we have shifted this section to the origin for purposes of efficient convo
lution. The section is then sampled and forced to be periodic; functions h(k) 
and the resulting convolution y(k) are also shown. Again, the first Q - 1 
samples of the convolution function are deleted because of the end effect. 

The final section of x(t) is shifted to the origin and sampled, as illus
trated in Fig. 1O.7(c); discrete convolution results with the first Q - 1 sam
ples deleted are also shown. 

Each of the discrete convolution sections of Figs. 1O.7(a) to (c) is re
constructed in Figs. 1O.8(a) to (c), respectively. We have replaced the shift 
from the origin, which was removed for efficient convolution. Note that with 
the exception of the holes created by the addition of these sectioned results, 
Fig. 1O.8(d) approximates closely the desired continuous convolution of Fig. 
10.8(e). By simply overlapping the sections of xCt) by a duration (Q - l)T, 
we can eliminate these holes entirely. 

Overlap-Save Sectioning 

In Fig. 1O.9(a), we show the identical waveform x(t) of Fig. 10.6(a). 
However, note that the sections of x(t) are now overlapped by (Q - l)T, 
the duration of the function h(t) minus T. 

We shift each section of x(t) to the origin, sample the section, and form 
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(el 

Figure 10.7 Discrete convolution of each section of Fig. 10.6(a). 

a periodic function. Figures 10. 9(b) to (e) illustrate the discrete convolution 
resulting from each section. Note that as a result of the overlap, additional 
sections are necessary. The first Q - 1 samples of each section are again 
eliminated because of the end effect. 

As illustrated in Fig. 10.10, we add each section of the discrete con
volution. The appropriate shift is added to each section. We do not have 
holes as before because the end effect occurs for a duration of the convo
lution that was computed by the previous section. Combination of each of 
the sections yields over the entire range the desired continuous convolution 
[Fig. 1O.6(c)]. The only end effect that cannot be compensated is the first 
one, as illustrated. All illustrations have been scaled by the factor T for 
convenience of comparison with continuous results. It remains to specify 
mathematically the relationships that have been developed graphically. 

Refer to Fig. 1O.9(a). Note that we choose the first section to be of 
duration NT. To use the FFT, we require that 

N = 2'1 'Y integer valued (10.8) 

and obviously, we require N > Q (the optimum choice of N is discussed 



214 FFT Convolution and Correlation Chap. 10 
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(b) 
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. ........................ . 

(d) 

(e) 

Figure 10.8 Reconstructed results of the discrete convolution of Fig. 10.7. 

later). We form the sampled periodic function 

xJ(k) = x(kT) k = 0, 1, ... , N -

and by means of the FFT compute 

N-J 

XJ(n) = .L x.(k)e-j2-rrnkIN 

k=O 
(10.9) 

Next, we take the Q sample values defining h(t) and assign zero to the 
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Figure 10.9 Discrete convolution of overlapped sections of data. 
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(a) 
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Figure 10.10 Reconstructed results of the discrete convolution of Fig. 10.9. 

remaining samples to form a periodic function with period N: 

h(k) = { ~(kT) k = 0, 1, ... , Q - 1 
k = Q, Q + 1, ... , N - 1 

(10.10) 

If h(t) is not shifted to the origin, as illustrated in Fig. 10.6(b), then h(t) is 
first shifted to the origin and Eq . (10.10) is applied . Using the FFT, we 
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compute 

and then the product 

N-. 

H(n) = L h(k)e -j2-rrnkIN 
k=O 

Y. (n) = X. (n)H(n) 

Finally, we compute the inverse discrete transform of Y. (n): 

1 N-. 

y.(k) = - L Y.(n)ej21TnkIN 
N n=O 

(10.1I) 

(10.12) 

(10.13) 

and because of the end effect, delete the first Q - 1 samples of y(k): yeO), 
y(1), ... ,y(Q - 2). The remaining samples are identical to those illustrated 
in Fig. to.to(a) and should be saved for future combination. 

The second section of xU), illustrated in Fig. to.9(a), is shifted to the 
origin and sampled: 

x2(k) = x[(k + [N - Q + I])T] k = 0, 1, ... , N - 1 (10.14) 

Equations (I0.1I) through (10.13) are then repeated. From Eq. (10.11), the 
frequency function H(n) has previously been determined and need not be 
recomputed. Multiplication, as indicated in Eq. (10.12), and subsequent in
verse transformation, as indicated in Eq. (10.13), yield the waveform Y2(k), 
illustrated in Fig. to.to(b). Again, the first Q - 1 samples ofY2(k) are deleted 
because of the end effect. All remaining sectioned convolution results are 
determined similarly. 

The method of combining the sectioned results is as illustrated in Fig. 
to.to(e): 

y(k) undefined 

y(k) = y.(k) 

y(k + N) = Y2(k + Q - I) 

y(k + 2N) = Y3(k + Q - I) 

y(k + 3N) = Y4(k + Q - 1) 

k = 0, 1, ... , Q - 2 

k = Q - 1, 

Q, ... , N - 1 

k = 0, 1, ... , N - Q 

k = 0, 1, ... , N - Q 

k = 0, 1, ... , N - Q 

(10.15) 

The terms select-saving and overlap-save are given in the literature [2, 3] 
for this technique of sectioning. 

Overlap-Add Sectioning 

An alternate technique for sectioning has been termed the overlap-add 
[2, 3] method. Consider the illustrations of Fig. to.ll. We assume that the 
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finite-length function x(t) is of a duration such that the samples representing 
x(t) exceed the memory of our computer. As a result, we show the sections 
of length (N - Q)T, as illustrated in Fig. IO.ll(a). The desired convolution 
is illustrated in Fig. IO.ll(c). To implement this technique, we first sample 
the first section of Fig. IO.ll(a); these samples are illustrated in Fig. IO.12(a). 
The samples are augmented with zeros to form one period of a periodic 
function. In particular, we choose N = 2'Y, N - Q samples of the function 
x(t): 

x.(k) = x(kT) 

and Q - 1 zero values: 

k = 0, 1, ... , N - Q 

x.(k) = 0 k = N - Q + 1, ... , N - 1 

(10.16) 

(10.17) 

Note that the addition of Q - 1 zeros ensures that there will be no end 
effect. Function h(t) is sampled to form a function h(k) with period N, as 
illustrated; the resulting convolution is also shown. 

The second section of x(t), illustrated in Fig. IO.ll(a), is shifted to zero 
and then sampled: 

x2(k) = x[(k + N - Q + 1)11 

=0 

xltl 

'0 
lal 

Ibl 

k = 0, ... ,N - Q 

k = N - Q + 1, ... , N -

(10.18) 

h ~ " . 
t 

leI 

Figure 10.11 Example illustrating proper sectioning for overlap-add discrete 
convolution. 
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Figure 10.12 Discrete convolution of each section of Fig. 10.11. 

As before, we add Q - I zeros to the sampled function xU). Convolution 
with h(k) yields the functionY2(k), as illustrated in Fig. 10.12(b). Convolution 
of each of the additional sequences is obtained similarly; the results are 
illustrated in Figs. 10. 12(c) and (d). 

We now combine these sectioned convolution results, as illustrated in 
Fig. 10.13. Each section has been shifted to the appropriate value. Note that 
the resulting addition yields a replica of the desired convolution. The trick 
of this technique is to add sufficient zeros to eliminate any end effects. These 
convolution results are then overlapped and added at identically those sam
ples where zeros were added. This gives rise to the term overlap-add. 
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Figure 10.13 Reconstructed results of the discrete convolution of Fig. 10.12. 

Computational Efficiency of FFT Sectioned 
Convolution 

In both of the sectioning techniques described, the choice of N seems 
to be rather arbitrary as long as N = 2'1. This choice determines the number 
of sections that must be computed, and thus the computing time. If an M-



1. Refer to Figs. 10.9 and 10.10 for a graphical interpretation 
of the algorithm. 

2. Let Q be the number of samples representing h(t). 

3. Choose N according to Table 10.2. 
4. Form the sampled periodic function h(k): 

h(k) = h(kT) 

=0 

k = 0,1, ... , Q - 1 

k = Q, Q + 1, ... , N - 1 

5. Compute the FFT of h(k): 

N-1 

H(n) = L h(k)e- i2'1fnklN 

k~O 

6. Form the sampled periodic function: 

x;(k) = x(kT) k = 0,1, ... , N - 1 

7. Compute the FFT of x;(k): 

N-1 

X;(n) = L x;(k)e- i2'1fnklN 

k~O 

8. Compute the product 

Y;(n) = X;(n)H(n) 

9. Compute the inverse FFT of Y;(n) (note scaling by 1/N): 

y;(k) = N~1 (~ Yi(n))e- i2'1fnklN 

n~O N 

10. Delete samples y;(O), y;(1), ... , y;( Q - 2), and save the 
remaining samples. 

11. Repeat Steps 6 to 10 until all sections are computed. 
12. Combine the sectioned results by the relationships 

y( k) undefined 

y(k) = Y1(k) 

y(k + N) = Y2(k + Q - 1) 

y(k + 2N) = Y3(k + Q - 1) 

k = 0,1, ... , Q - 2 

k = Q - 1, Q, ... , N - 1 

k = 0,1, ... , N - Q 

k = 0, 1, ... , N - Q 

13. Scale the results by the sample interval T. 

Figure 10.14 Computation procedure for FFT convolution: select-savings method. 
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1. Refer to Figs. 10.12 and 10.13 for a graphical interpretation 
of the algorithm. 

2. Let Q be the number of samples representing h(t). 

3. Choose N according to Table 10.2. 
4. Form the sampled periodic function h(k): 

h(k) = h(kT) k = 0.1 ..... Q - 1 

=0 k = Q. Q + 1 ..... N - 1 

5. Compute the FFT of h(k): 
N-1 

H(n) = L h(k)e-i27rnkiN 
k~O 

6. Form the sampled periodic function: 

Xi( k) = x( kT) 

= 0 

k = 0.1 ..... N - Q 

k= N- Q+ 1 ..... N-1 

7. Compute the FFT of xj(k): 

N-1 
X;(n) = L x;(k)e-i27rnkiN 

k=O 

8. Compute the product 

Y;(n) = X;(n)H(n) 

9. Compute the inverse FFT of Y;(n) (note scaling by 1/N): 

y;(k) = Ni ' (~ Yi(n))e-i27rnkiN 
n~O N 

10. Repeat Steps 6 to 9 until all sections are computed. 
11. Combine the sectioned results by the relationships 

y(k) = Y1(k) 

k = 0.1 ..... N - Q 

y( k + N - Q + 1) = Y1 (k + N - Q + 1) + Y2( k) 

k = 0.1 ..... N - Q 

y[k + 2(N - Q + 1)] = h(k + N - Q + 1) + Y3(k) 

k = 0,1, .... N - Q 

12. Scale the results by sample interval T. 

Figure 10.15 Computation procedure for FFT convolution: overlap-add method. 
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point convolution is desired, then approximately M/(N - Q + 1) sections 
must be computed. If it is assumed that M is sufficiently greater than N -
Q + 1, then the time required to compute H(n) via the FFT can be ignored. 
Each section requires a forward and an inverse transform; hence, the FFT 
must be repeated approximately 2M/(N - Q + 1) times. We have exper
imentally determined the optimum value of N; the results of this investigation 
are given in Table 10.2. One can depart from the values of N shown without 
greatly increasing the computing time. 

TABLE 10.2 Optimum 
Value of N for FFT 

Convolution 

Q N = 2" 

:s10 32 
11- 19 64 
20- 29 128 
30- 49 256 
50- 99 512 

100-199 1024 
200-299 2048 
300-599 4096 
600-999 8192 

We describe the step-by-step computational procedure for the select 
saving and the overlap-add methods of sectioning in Figs. 10.14 and 10.15, 
respectively. Both algorithms are approximately equivalent with respect to 
computational efficiency. 

If the functions x(t) and h(t) are real, then we can use additional tech
niques to more efficiently compute the FFT. In the next section, we describe 
exactly how this is accomplished. 

10.3 EFFICIENT FFT CONVOLUTION 

We have to this point in the discussion considered that the functions being 
convolved are real functions of time. As a result, we have not utilized the 
full capabilities of the FFT. In particular, the FFT algorithm is designed for 
complex input functions; thus, if we only consider real functions, then the 
imaginary part of the algorithm is wasted. In this section, we describe how 
to divide a single real waveform into two parts, calling one part real, one 
part imaginary, and how to compute the convolution in one-half the normal 
FFT computing time. Alternately, our technique can be used to convolve 
two signals with an identical function simultaneously. 
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Consider the real periodic sampled functions g(k) and s(k). It is desired 
to convolve simultaneously these two functions with the real function h(k) 
by means of the FFT. We accomplish this task by applying the technique 
of efficient discrete transforms, which was discussed in Sec. 9.3. First, we 
compute the discrete Fourier transform of h(k), setting the imaginary part 
of h(k) to zero: 

N-\ 

H(n) = L h(k)e -j27rnkIN 

= Hr(n) + jHi(n) 

Next, we form the complex function 

p(k) = g(k) + js(k) k = 0, 1, ... , N - 1 

and compute 
N-\ 

P(n) = L p(k)e -j27rnkIN 

= R(n) + j/(n) 

Using the discrete convolution theorem, Eq. (6.50), we compute 

(10.19) 

(10.20) 

(10.21) 

1 N-I . 

y(k) = Yr(k) + jYi(k) = p(k) * h(k) = - L P(n)H(n)eJ27rnkIN 
N k~O 

(10.22) 

From Eqs. (9.6) and (9.7), the frequency function P(n) can be expressed as 

P(n) = R(n) + j1(n) 

where 

= [RAn) + Ro(n)] + j[le(n) + lo(n)] 

= G(n) + jS(n) 

G(n) = Re(n) + jlo(n) 

S(n) = I An) - jRo(n) 

Product P(n)H(n) is then given by 

P(n)H(n) = G(n)H(n) + jS(n)H(n) 

and thus the inversion formula yields 

1 N-I . 

y(k) = Yr(k) + jYi(k) = - L P(n)H(n)eJ27rnkIN 
N n~O 

(10.23) 

(10.24) 

(10.25) 

(10.26) 
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where 

1 N-I 

Yr(k) = - L G(n)H(n)e j2-rrnkIN 

N k~O 

1 N-I . 

jYi(k) = - L jS(n)H(n)eJ2-rrnkIN 

N k~O 

(10.27) 

which is the desired result. That is, Yr(k) is the convolution of g(k) and h(k), 
and Yi(k) is the convolution of s(k) and h(k). If g(k) and s(k) represent 
successive sections, as described in the previous section, then we have re
duced the computing time by a factor of two by using this technique. One 
still must combine the results as appropriate for the method of sectioning 
being employed. 

Now consider the case where it is desired to perform the discrete con
volution of x(k) and h(k) in one-half the time by using the imaginary part of 
the complex time function, as discussed in Sec. 9.3. Assume x(k) is described 
by 2N points; define 

g(k) = x(2k) k = 0, I, ... , N - 1 

s(k) = x(2k + I) k = 0, I, ... , N - 1 

and let 

p(k) = g(k) + js(k) k = 0, I, ... , N - 1 

But Eq. (10.29) is identical to Eq. (10.20); therefore, 

1 N-I . 

z(k) = zr(k) + jZi(k) = - L P(n)H(n)eJ 2-rrnkIN 

N n~O 

where the desired convolution y(k) is given by 

y(2k) = zr(k) 

y(2k + I) = zi(k) 

k = 0, I, ... , N - 1 

k = 0, I, ... , N - 1 

(10.28) 

(10.29) 

(10.30) 

As in the previous method, we must still combine the results as appropriate 
for the method of sectioning being considered. 

10.4 FFT CORRELATION OF FINITE·DURATION 
WAVEFORMS 

Application of the FFT to discrete correlation is very similar to FFT con
volution. As a result, our discussion on correlation will only point out the 
differences in the two techniques. 
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Consider the discrete correlation relationship 
N-] 

z(k) = L hU)x(k + i) (10.31) 
;=0 

where both x(k) and h(k) are periodic functions with period N. Figure 
1O.16(a) illustrates the same periodic functions x(k) and h(k) considered in 
Fig. 1O.1(b). Correlation of these two functions according to Eq. (10.31) is 
shown in Fig. 1O.16(b). Scaling factor T has been introduced for ease of 
comparison with continuous results. Note from Fig. 1O.16(b) that the shift 
from the origin of the resultant correlation function is given by the difference 
between the leading edge of x(k) and the trailing edge of h(k). Recall that a 
positive shift for h(k) is to the left. 

In convolution, either function can be folded and shifted. The results 
are unchanged. This is not the case for correlation. Figure 1O.16(c) illustrates 
the correlation function resulting from the shift x(k) rather than h(k). Note 
that the results give the same waveform but the waveform is shifted to the 
right by a - d in Fig. 1O.16(b) and shifted to the left by a - d in Fig. 
10.16(c). Care should be exercised in interpreting the correlation results of 
Fig. 1O.16(c) to ensure that the correct shift from the origin has been de
termined. As in our convolution example, the correlation computation il
lustrated in Fig. 1O.16(b) is inefficient because of the number of zeros in
cluded in the N points defining one period of the periodic correlation 
function. Restructuring of the data is again the solution we choose for ef
ficient computation. 

If we shift both functions to the origin, as shown in Fig. 1O.17(a), then 

x(k) h(k) 

b d k 

I----N---li 
k 

\---N---j 

(8) 

z(k) = T ~ xli) h(k+i) z(k) = T~h(i) x(k+i) ... 

.............................. 

a-d k b 
I----N-----i 

(b) (e) 

Figure 10.16 Example illustrating inefficient discrete correlation. 
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la) 

lZlk) 

··············b~-~s···························· 
Ib) 

xlk) 

Ie) 

N - 1 
zlk) = T ~ h(i)xlk+i) 

i = 0 

Id) 

hlk) 

! ........... . 
2 

k 

k 

Figure 10.17 Discrete correlation of restructured data. 
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k 

the resulting correlation is as iIIustrated in Fig. lO.17(b). Although the cor
relation waveform is correct, it must be unraveled before it is meaningful. 
We can remedy this situation by restructuring the waveform x(k), as shown 
in Fig. lO.l7(c). For this condition, the resulting correlation waveform is as 
illustrated in Fig. lO.17(d). This is the desired waveform with the exception 
of a known time shift. 

To apply the FFT to the computation of Eq. (10.31), we choose the 
period N to satisfy the relationships 

N:2:.P+Q-l (10.32) 
N = 2"Y 'Y integer valued 
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1. Let x(t) and h(t) be finite-length functions shifted from the 
origin by a and b, respectively. 

2. Let P be the number of samples defining x(t) and Q be the 
number of samples defining h(t). 

3. Choose N to satisfy the relationships 

N?:.P+Q-1 

N = 2"1 "y integer valued 

4. Define x(k) and h(k) as follows: 

x(k) = 0 

x(k) = x(kT + a) 

h(k) = h(kT + b) 

h(k) = 0 

k = 0, 1, ... , N - P 

k=N-P+1, 

N - P + 2, ... , N - 1 

k = 0,1, ... , Q - 1 

k = Q, Q + 1, 

... , N - 1 

5. Compute the FFT x(k) and h(k): 

N-1 
X(n) = L x(k)e-j27rnkiN 

k~O 

N 

H(n) = L h(k)e-j27rnkiN 
k=O 

6. Change the sign of the imaginary part of H(n) to obtain H*(n). 

7. Compute the product 

Zen) = X(n)H*(n) 

8. Compute the inverse FFT using the forward FFT: (note scal
ing by 1/N): 

z(k) = N~1 (~Z*(n)) e-j27rnkiN 
n~O N 

9. Scale the results by sample interval T. 

Figure 10.18 Computation procedure for FFT correlation of finite-length functions. 
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We shift and sample x(t) as follows: 

x(k) = 0 k = 0, 1, ... , N - P 

x(k) = x[kT + a] k = N - P + 1, N - P + 2, ... ,N - 1 

(10.33) 

That is, we shift the P samples of x(k) to the extreme right of the N samples 
defining a period. Function h(t) is shifted and sampled according to the 
relations 

h(k) = h(kT + b) 

h(k) = 0 

k = 0, 1, ... , Q - 1 

k = Q, Q + 1, ... , N -
(10.34) 

Based on the discrete correlation theorem, Eq. (7.13), we compute the 
following: 

N-] 

X(n) = L x(k)e -j2-rrnkIN 

k~O 

N-J 

H(n) = L h(k)e-j2-rrnkIN 

k=O 

Z(n) = X(n)H*(n) 

1 N-J 

z(k) = - L Z(n)e j2-rrnkIN 

N n~O 

The resulting z(k) is identical to the illustration of Fig. 10.17(d). 

(10.35) 

(10.36) 

(10.37) 

(10.38) 

Computing times of Eqs. (10.35) through (10.38) are essentially the 
same as the convolution Eqs. (10.4) through (10.7) and the results of the 
previous section are applicable. The computations leading to Eq. 00.38) are 
outlined in Fig. 10.18 for easy reference. 

The key to carrying one's knowledge of FFT convolution techniques 
to FFT correlation is to remember that in correlation there is no folding 
operation and that a shift to the left is positive. This latter factor is probably 
responsible for the majority of errors in interpreting FFT correlation results. 

PROBLEMS 

10.1 Given the functions h(l) and X(l) illustrated in Fig. 10.19, determine the opti
mum choice of N to eliminate overlap effects during convolution and corre
lation. Assume a sample period of T = 0.1 and a base-2 FFT algorithm. Graph
ically show how to restructure the data for efficient convolution computation. 

10.2 Consider the functions x(l) and h(l) of Fig. 10.19. Graphically show how to 
apply the overlap-save and overlap-add sectioning techniques for computing 
the convolution of x(l) and her). 
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h{l) 

2 3 4 5 6 2 3 

(a) 

X{I) 
h{t) 

2 3 4 5 6 2 3 

(b) 

X(I) hit) 

2 3 4 5 6 2 

(e) 

Figure 10.19 Functions for Probs. 10.1 to lOA. 

10.3 Repeat Problem 10.2 for the correlation of x(t) and h(t). 

10.4 Repeat Problem 10.3 for the functions x(t) and h(t) illustrated in Fig. 10.6. 
10.5 Use the FFT to duplicate the results shown in Figs. 10.7, 10.9, 10.10, 10.12, 

and 10.13. Apply the efficient FFT convolution techniques described in Sec. 
lOA. 

10.6 Develop graphically the overlap-save and overlap-add sectioning techniques 
for discrete correlation. 

10.7 Repeat Problem 10.5 for the case of correlation of the two waveforms. 
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1 1 

TWO-DIMENSIONAL 

FFT ANALYSIS 

In previous chapters, we applied the FFT to the analysis and processing of 
one-dimensional waveforms. Many of the techniques, procedures, and con
cepts discussed can be readily extended to two-dimensional FFT signal pro
cessing. A two-dimensional signal is a function h(x ,y) of two variables x and 
y. Two-dimensional FFTs are of considerable computational importance in 
the digital processing of two-dimensional waveforms such as images, geo
physical arrays, gravity and magnetic data, and antenna analysis. Our ap
proach is to develop the fundamental principles on which these applications 
of the FFT are based. 

We will discuss in this chapter the concepts and techniques for applying 
the FFT to two-dimensional forward and inverse Fourier transforms. Ap
plications of the FFT to two-dimensional convolution and correlation inte
grals are also addressed. As we will see, these applications are an extension 
of the previously developed one-dimensional case. However, because the 
two-dimensional Fourier transform is generally a less familiar analysis tool 
than the one-dimensional transform, we have chosen to develop our results 
from two-dimensional definitions rather than generalizing one-dimensional 
results. 

11.1 TWO·DIMENSIONAL FOURIER TRANSFORMS 

A two-dimensional function h(x,y) has a two-dimensional Fourier transform 
H(u,v) given by 

232 
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H(u,v) == f_oooo f_oox h(x,y)e -j27r(UX + vy) dx dy 01.1) 

Analogous to the one-dimensional case, Eq. 01.1) describes the analysis of 
the two-dimensional function h(x,y) into components of the form COS[21T(UX 

+ vy)] and sin[21T(ux + vy)]. 
An example of a two-dimensional waveform is illustrated in Fig. 

11.1(a). The function shown represents a cosinusoidally corrugated two
dimensional surface. If a section is made through the corrugation in the y
h plane, the sectioned function oscillates with a frequency of Vo cycles per 
unit of y (i.e., analogous to cycles per second). To distinguish between fre
quencies associated with functions of time and functions of length, the terms 
temporal and spatial are used, respectively. The two-dimensional Fourier 
transform of Fig. 11.1(a) as determined from Eq. 01.1) is the pair of impulse 
functions shown in Fig. 11.1(b). 

The concept of a two-dimensional waveform is further illustrated in 
Fig. 11.2(a). For this example, a section is made through the corrugations 
in the x-h plane. The waveform oscillates with a spatial frequency of Vo sineS) 
cycles per unit of x. Similarily, a section made through the corrugations in 
the y-h plane oscillates with a frequency of Vo cos(S) cycles per unit of y. 
Figure 11.2(a) is simply that of Fig. 11.1(a) rotated through an angle S. 

The two-dimensional Fourier transform of Fig. 11.2(a) is illustrated in 
Fig. 11.2(b). As shown, the spacial frequency at which the corrugation os
cillates in a section perpendicular to the lines of zero phase is given by 
[vo cos2(S) + Vo sin2(S)]'/2 = Vo. Note that the frequency impulse functions 
are located on an axis rotated through an angle S with respect to the results 
of Fig. 11.I(b). A comparison of Figs. 11.1 and 11.2 shows that if a function 
h(x,y) is rotated through an angle S, then its two-dimensional Fourier trans
form is also rotated through an angle S. 

Example 11.1 Two-Dimensional Pulse Waveform 

Find the two-dimensional Fourier transform of the function illustrated in Fig. 11.3(a). 
From Fig. 11.3, 

h(x,y) = 1 -l<x<I;-l<y<1 

= 0 otherwise 

Substitution of Eq. (11.2) into Eq. (11.1) yields 

H(u,v) = J' e-j27rvy dy J' e-j27rux dx -, -, 

= f, [COS(21TVY) - j sin(21Tvy)] dy 

x L'( [COS(21TUX) - j sin(2'lTux)] dx 

(11.2) 

(11.3) 

Because the sin(~) term integrates to zero over the interval ( - 1,1), then integration 
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h(x.V) 

v 

(a) 

H(u.v) 

Ib) 

Figure 1l.3 Two-dimensional pulse-waveform Fourier transform pair. 
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of Eq. (11.3) yields 

sin(2-rru) II 
H(u,v) = cos(2'ITvy) dy 

'lTU - I 

sin(2'ITu) sin(2'ITv) 
'lT2UV 

Figure 11.3(b) illustrates this two-dimensional Fourier transform result. 

Example ll.2 Two-Dimensional Fourier Transform: Separable Functions 

Find the two-dimensional Fourier transform of the function 

h(x,y) = cos(2'ITuox) cos(2'ITvoY) 

From Eq. (11.1), 

H(u,v) = L"'", f:", cos(2'ITuoX) cos(2'ITvoy)e -j2Tr(ux + vy) dx dy 

= f-"'", cos(2'ITvoy)e -j2.rt'y dy f-"'", cos(2'ITuox)e -j2TrUX dx 

= Y2 f-"'", (e j2TrVOY + e -j2TrVOY)e -j2Trvy dy 

x [Y2 f-"'", (ej2TrUOX + e - j2TrUOX)e - j2Trux dx ] 

= Yzf_"'", (e-j2TrY(1'-VO) + e-j2TrY(V+VO) dy 

+ Y2f_oo", {e- j2Trx [u-uoJ + e-j2TrX[u+uOJ} dx 

= Y2 8(u,v - vo) + 1/28(u,v + vo) 

+ 1/28(u - uo,v) + 1/28(u + Uo,v) 
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(11.4) 

(11.5) 

(11.6) 

The relationship of Eq. (11.5) is termed a separable function in that its two
dimensional Fourier transform can be computed as the product of two single-variable 
integrals. Note that the function given in Eq. (11.2) is also separable. 

One-Dimensional Interpretation of Two-Dimensional 
Transforms 

The two-dimensional Fourier transform H(u,v) can be viewed as two 
successive one-dimensional transforms. To develop this viewpoint, we first 
rewrite Eq. (11.1) as 

H(u,v) = J:oo e- j2-rrvy [J:", h(x,y)e- j2-rrux dxJ dy (11.7) 

Note that the term in brackets is simply the one-dimensional Fourier trans
form of h(x,y) with respect to x, that is, 

Z(u,y) = f:", h(x,y)e -j2-rrux dx (11.8) 
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Equation (11.7) can then be rewritten as 

H(u,v) = J:"" Z(u,y)e -j2-rrvy dy (11.9) 

where we have substituted Z(u,y) for the term in brackets in Eq. (11.7). An 
examination of Eq. (11.9) reveals that H(u,v) is the one-dimensional trans
form of Z(u,y) with respect to y. Hence, the two-dimensional Fourier trans
form H(u,v) can be interpreted as the two successive one-dimensional trans
forms given by Eqs. (11.8) and (11.9). 

Analytical evaluation of a two-dimensional integral can be implemented 
by simply determining the two successive one-dimensional integrals of Eqs. 
(11.8) and (11.9). These single-dimension integrals are evaluated exactly by 
the procedures followed in the one-dimensional Fourier transform case. 
Hence, the two-dimensional Fourier transform can be evaluated using the 
methods and fundamentals developed in previous discussions. As we will 
see, this interpretation is of considerable importance in applying the FFT 
to the computation of two-dimensional Fourier transforms. 

Example 11.3 Two-Dimensional Fourier Transforms: Successive 
One-Dimensional Transforms 

In Fig. 11.2, we illustrated the two-dimensional Fourier transform of the function 

h(x,y) = cos{21r[voY cos(6) + VOX sin(6)]} (11.10) 

To compute the transform analytically, we substitute Eq. (11.10) into Eq. (11.1): 

H(u,v) = J:"" J:", COS{21T[VoY cos(6) 

+ VOX sin(6)]}e -j2'T1"(ux+vy) dx dy (11.11) 

We next apply the principles developed in Eqs. (11.8) and (11.9) by rewriting Eq. 
(11.12) as two successive single-dimension Fourier transforms: 

H(u,v) = I-~~ e-j2'ffVY (I-oo~ COS{21T[VoY cos(6) 

+ VOX sin(6)]}e -j2'ffIiX dX) dy 

= 1/2 f-~~ e - j2'ffvy [f-~oo (e j2'ff[VOY cos(8) + vox sin(8)J)e - j2'ffIiX dx 

+ f-~~ (e - j2'ff[VOY cos(8) + vox sin(8)J)e - j2'ffIiX dxJ dy 

= 1/2 f-~oo e -j2'ffvy [f_OOoo (e j2'ff[VOY COS(8)-X(II-vo)sin(8)J) dx 

+ f_oooo (e -j2'ff[vOY COS(8)+X(II+vo)sin(8)J) dXJ dy 
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= 1/2 f-"'", e -j2TrUY (ej2TrVOY cosIO) f-"'", e -j2Trx(u-vo)sin(0) dx 

+ e - j 2TrvOY cosIO) f-"'", e - j2Trx(u + vo) sin(O) dX) dy 

= Vz f-"'", e -J2TrvY{ej2TrVOY cosIO) 8[u - Vo sin(8),y] 

+ e - j2Trvoy cosIO) 8[u + Vo sin(8),y]} dy 

= 1/2 f-"'", 8[u - Vo sin(8),y]e -j2TrY(v-vo cos(O)1 dy 

+ 1/2 f-"'", 8[u + Vo sin(8),y]e -j2TrY(v-vo cos(O)1 dy 

= Y2 8[u - Vo sin(8),v - Vo cos(8)] 

+ 1/2 8[u + Vo sin(8),v + Vo cos(8)] 
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(11.12) 

The two-dimensional frequency function of Eq. (11.12) is illustrated in Fig. 11.2(b). 

Inverse Fourier Transform 

The two-dimensional inverse Fourier transform is given by 

h(x,y) = f:oo f:oo H(u,v)eJ2-rr(ux+vy) du dv (11.13) 

Analogous to the one-dimensional inverse Fourier transform, Eq. (11.13) 
implies that corrugations of appropriate frequencies, orientations, phases, 
and amplitudes can be summed to produce the original two-dimensional 
waveform. However, it is recognized that the two-dimensional inverse Four
ier transform is much more difficult to visualize than the one-dimensional 
transform. 

Example 11.4 Two-Dimensional Inverse Fourier Transform 

Find the inverse two-dimensional Fourier transform of the frequency function 

From Eq. (11.13), 

H(u,v) = n 
= 0 

-a ::5 U ::5 a, -b ::5 v ::5 b 

otherwise 

h(x,y) = L"'", L"'", nej2Tr(ux+vy) du dv 

= n f:b ej2
-rruy dv [fa eJ2TrUX dUJ 

= n f:b cos(21rvy) dv [f~a COS(21TUX) duJ 

= n [sin~;bY) ] [ sin~;aX) ] 

(11.14) 

(lLl5) 
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Example 11.4 demonstrates the property that if the frequency function 
H(u,v) can be decomposed into a product of a function of the variable u and 
a function of the variable v, then the function h(x ,y) can be decomposed into 
a product of a function of the variable x and a function of the variable y. 

Summary 

We normally find two-dimensional Fourier transform relationships 
much more difficult to picture than one-dimensional relationships. This gen
erally follows from the emphasis of one's formal training and experience in 
the analysis and synthesis of single-dimension functions. As with any new 
area of study, a thorough and fundamental understanding comes only with 
considerable exposure and practical experience. The previously developed 
basic principles should form the foundation for such an investigative en
deavor. A comprehensive treatment of two-dimensional Fourier transform 
properties is given in Ref. [I]. 

11.2 TWO-DIMENSIONAL FFTs 

Recall from the development of Eqs. (11.8) and (11.9) and Ex. 11.3 that the 
two-dimensional Fourier transform can be written as two successive single
dimension Fourier transforms. This interpretation of the two-dimensional 
transform is also readily seen in the two-dimensional discrete Fourier trans
form. We assume that the two-dimensional function h(x,y) has been sampled 
in the x dimension with sample interval Tx and sampled in the y dimension 
with sample interval Ty. The resulting sampled function is h(pTx,qTy), where 
p = 0, I, ... , N - I and q = 0, I, ... , M - I. 

Analytical Development 

Analogous to the one-dimensional case, the two-dimensional discrete 
Fourier transform is defined as 

H(nINTx,mIMTy) = :~~ [:~~ h(PTx,qTy)e-j2-rrnPINJ e-j2-rrmqIM 

p = 0, I, ... ,N - n = 0, I, ... ,N -

q = 0, I, ... ,M - I m = 0, I, ... , M - I 

(l1.l6) 

Note that the term in brackets is simply a one-dimensional discrete 
Fourier transform along the data array defined by parameter p. To evaluate 
the term in brackets, we compute M one-dimensional transforms: one for 
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each q, where q = 0, I, ... , M - I, along the data array defined by p. If 
we call each of these FFT results Z(nINTx,qTy), then Eq. (l1.l6) can be 
rewritten as 

M-I 

H(nINTx,mIMTy) = L Z(nINTx,qTy)e -j2TrmqlM (l1.l7) 
q=O 

Equatioll (11.17) is evaluated by N one-dimensional discrete Fourier trans
forms, each along the data array defined by parameter q. As shown ana
Iytically, the two-dimensional discrete Fourier transform can be imple
mented straightforwardly by computing one-dimensional discrete Fourier 
transforms: first on the function h(pTx,qTy), where p = 0, I, ... , N - 1 
for each q; and then a second one-dimensional transform on the function 
Z(nINTx,qTy), where q = 0, I, ... , M - 1 for each n = 0, I, ... , N -
1. Equations (l1.l6) and (l1.l7) must be multiplied by the scale factor TxTy 
to obtain equivalence between the continuous and discrete transforms. 

Graphical Development 

To further illustrate the one-dimensional computation of a two-dimen
sional Fourier transform, consider Fig. 1l.4(a). As illustrated, we interpret 
the sampled data of the two-dimensional waveform as a data matrix with M 
= 8 rows, where q = 0, I, ... , M - I, and N = 8 columns, where p = 
0, I, . . . , N - l. Because the terms in brackets in Eq. (l1.l6) sum on the 
parameter p, then this summation corresponds to computing the one-di
mensional discrete Fourier transform for each row of data, that is, a trans
form is computed for each q = 0, I, ... , M - I. 

The discrete Fourier transform or FFT of row ° is a frequency function 
defined by all zero values because the values of the sampled function rep
resented by row ° is a zero-valued function. In Fig. 11.4(b), row 0, we plot 
this FFT result. The sampled function defined by row 1 is also zero and, 
correspondingly, the FFT computed for this row is a zero-valued function, 
as shown in Fig. 1 1.4(b) , row l. 

Now consider the sample values of row 2. These samples define a pulse 
or rectangular waveform that has a I [sin(f)]lf I transform. The magnitude 
of the FFT of row 2 is the frequency function illustrated in Fig. 11.4(b), row 
2. Note that we display the FFT results in the standard one-dimensional 
format, that is, the first NI2 values represent positive frequency results and 
the remaining values represent negative frequency results. The sample val
ues of rows 3 to 5 in Fig. 11.4(a) also define a pulse waveform and hence, 
the magnitude of the FFT of each of these rows is the I [sin(f)]lf I function 
shown in Fig. 1 l.4(b) , rows 3 to 5. Rows 6 and 7 of Fig. 11.4(a) are zero
valued; rows 6 and 7 of Fig. 11.4(b) are then zero-valued. 

To this point, we have computed the FFT of the sampled matrix of 
Fig. 11.4(a) for each row. The complex data matrix represented by the mag-
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Figure 11.4 Graphical development of the two-dimensional FFf as a sequence 
of one-dimensional transforms. 
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nitude function shown in Fig. 11.4(b) corresponds to computing the terms 
in brackets in Eq. (11.16) for each value of q. That is, we have effectively 
set q = 0 and computed an FFT over the p = 0, I, ... , N - 1 sample 
values; set q = 1 and computed the FFT over the p = 0, I, ... N - 1 
sample values; etc. Next, we proceed to compute the outer sum of Eq. 
(11.16). Note that this summation is on q, the row data values of Fig. 11.4(b) 
for each n = 0, I, ... , N - I. Hence, we compute the FFT of the complex 
sample values of each column of the matrix. 

In Fig. 11.4(b), the sample values of column 0 define a pulse waveform. 
The FFT of this waveform is then the I [sin(f)]/f I function illustrated in 
magnitude form in Fig. 11.4(c), column o. As before, we display the results 
in the standard one-dimensional FFT format, where the first M/2 values 
represent positive frequency results and the remaining values are negative 
frequency results. 

Observe that the sampled functions defined by each nonzero column 
of Fig. 11.4(b) are of the same form, a pulse waveform with differing am
plitude. Our input to the FFT in each case is the complex result determined 
in Fig. 11.4(b). Hence, the FFT of each nonzero column is a I [sin(f)]lf I 
function and the results for each column differ only in amplitude. Figure 
11.4(c) illustrates the magnitude of the FFT for each column of Fig. 11.4(b). 

As in the one-dimensional FFT, we must consider both the sampled 
data matrix that forms the input to the FFT and the two-dimensional FFT 
results to be one period of a two-dimensional periodic sequence with period 
(N,M). For this reason, we must interpret the illustrations of Figs. 11.4(a) 
to (c) as one period of a waveform that is periodic in both the row and column 
indices. This periodicity constraint is examined further in a later section. 

Also analogous to the one-dimensional case, spacial frequency reso
lution in two-dimensional FFT results is given by 

l1u = lI(NTx) 

I1v = lI(MTy) 

Computations Required for Two-Dimensional FFTs 

(11.18) 

Figure 11.4 readily illustrates the concept of computing the two-di
mensional discrete Fourier transform by determining successive single-di
mensional transforms. We first compute the FFT of each row of data, that 
is, M transforms of N samples each. We organize these results, as shown 
in Fig. 1 1.4(b) , and then compute the FFT of each column of data, that is, 
N transforms of M samples each. Therefore, a data matrix of size N x M 
requires N + M FFTs to be computed. From Chapter 8, the total number 
of computations is NM log2 NM. 
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Reorganizing Two-Dimensional FFTs 
for Conventional Viewing 

Recall in the one-dimensional FFT case that it was necessary to rear
range the FFT results if we wished to display them in a format for conven
tional viewing (Sec. 9.1). A similar situation is encountered for two-dimen
sional FFTs. Figure 11.4(c) must be rearranged or reorganized if the results 
are to be viewed conventionally. We repeat' Fig. 11.4(c) in Fig. 11.5(a) and 
illustrate the required reorganization of Fig. 11.5(a) in Fig. 11.5(b). The same 
reorganization procedure is shown in Figs. 11.5(c) and (d), but from a data
matrix perspective to further clarify the required data restructuring. 

Note that if we examine the data matrix in terms of quadrants, then 
the restructuring procedure is simply one of a right circular shift through 
two quadrants. An examination of Figs. 11.5(c) and (d) illustrates this point. 
The FFT output data in quadrant I ends up in quadrant III after restructuring. 
Quadrant III is a right circular shift through two quadrants from quadrant 
I. We repeat the Nyquist spacial frequency sample values, H(nINTx ,4) and 
H(4,mIMTy ), in each quadrant. For the real array, quadrant III is a positive 
reflection of quadrant I, and quadrant IV is a positive reflection of II. For 
the imaginary array, quadrant III is a negative reflection of I and quadrant 
IV is a negative reflection of II. 

Example 11.5 Two-Dimensional FFT Computation 

To further demonstrate two-dimensional FFT computation, consider the cosinu
soidally corrugated two-dimensional surface illustrated in Fig. 11.6(a). We first sam
ple the surface with sample intervals Tx and Ty , resulting in 4 rows and 16 columns 
of data. Note that the row samples define exactly a multiple period of the cosine 
waveform surface. 

We next compute the one-dimensional FFT of each row of sampled data. From 
Fig. 11.6(a), row 0 is a cosine waveform and hence the FFT of row 0 is the impulse 
functions shown in row 0 (columns 2 and 14) of Fig. 11.6(a). Recall that the impulse 
function in column 14 is a negative frequency result because columns 9 to 15 represent 
negative frequencies. Because each row of sampled data defines the same cosine 
waveform, the FFf results for each row are identical, as shown in Fig. 11.6(b). This 
data matrix is the input to the second series of one-dimensional FFfs. We next 
compute the FFT of each column of data in Fig. 11.6(b). Each column of data is a 
zero-valued function except for columns 2 and 14. Columns 2 and 14 are both con
stant-value functions whose FFTs are impulse functions at zero spacial frequency 
(ml(MTy ), where m = 0). These results are shown in Fig. 11.6(c). 

Figure 11.6(c) illustrates the results of the two-dimensional FFf obtained by 
implementing successive single-dimension FFTs. However, it is necessary to rear
range these results according to the restructuring procedure illustrated in Fig. 11.5. 
Restructured two-dimensional FFT results are shown ;11 Fig. 11.6(d). Note the re
structuring procedure is one of a right circular shift through two quadrants. Nyquist 
spacial frequency data values are repeated in each quadrant. 
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Figure 11.5 Graphical presentation of two-dimensional FFT reorganization required for con
ventional viewing, 
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h(x.V) 

(a) 

qT, (b) 

Figure 11.6 Two-dimensional FFT computation of a cosinusoidaIly corrugated 
sulface: (a) sampled wavefonn, (b) FFT of row data, (c) FFT of columns of part 
(b), and (d) reorganization of part (c). 

Example 11.6 Alternative Two-Dimensional FFf Computational Procedure 

In Ex. 11.5, we first compute the FFT of each row of the input data matrix 
and then the FFT of each column of the intermediate computational matrix. Equiv
alent results could be obtained if we first compute the FFT of each column and 
subsequently compute the FFT of each row of the intermediate results. This simply 
states the fact that Eq. (11.16) can be rewritten in a form such that one first sums 
on q, which corresponds to computing the one-dimensional discrete Fourier trans
form for each column of data. 

Figure 11.7 illustrates the alternate two-dimensional FFT computational pro
cedure. In comparison to the previous example, the two-dimensional waveform 
shown is a corrugated sinusoidal surface. Note that the row samples define exactly 
a mUltiple period of the sinusoidal surface. Because each column of sampled data 
is a constant-value function, then the FFT of each column of data is an impulse at 
zero spacial frequency. The amplitude of each impulse is equal to the amplitude of 
the constant sample value for each column. FFT results of the column data are 
illustrated in Fig. 11.7(b). 

We next compute the FFT of each row of the data matrix of Fig. 11.7(b). Row 



Sec. 11.2 Two-Dimensional FFTs 

m 
MT, 

,~-----, ~~--~ ,. ..... " ..... " 
" " " ",' ,,'" I , " 

/' " " n I ••••••• /~ ••••••• II / NT .. 

~ - ....... ,". ...... -.. --," , , , 
I ••••••• .,. • • • • • • I 

'IV ",,' III ,1 
' ..... _--_ ... ", "",' .... -" ..... _-----

(0) 

, ... -, 
.,.----- ...... , ...... , , 

" III·.·· • • •••••••• IV,' 

,~ I 
, II • • • • • • • • I 

I •••••••• • ••••.•• I / 
, _____ - I " 

,---------
m (d) 

Figure 11.6 (continued) 

.. 
~, 

n 

, 

247 

o data defines a sinusoidal waveform whose FFT is the set of impulse functions 
shown in Fig. 11. 7(c). The impulse function of column 14 is a negative frequency 
value, as illustrated in the restructured two-dimensional results of Fig. 11. 7(d). 

Two-Dimensional Periodicity Constraints 

In Chapter 6, we saw that the discrete Fourier transform is defined 
only for periodic sampled functions. A similar result can be shown for the 
two-dimensional discrete Fourier transform. A two-dimensional sampled 
function is periodic in the row index p with period N and in the column 
index q with period M if 

(11.19) 

where c and d are arbitrary positive or negative integers. 
Figure 11.8 illustrates the implications of Eq. (11.19). The 4 x 4 matrix 

within the dotted square is assumed to be the sampled surface. Note that 
we sampled the two-dimensional function only for positive values of x and 
y. However, due to the periodicity constraint of Eq. (11.19), we must in-
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Chap. 11 

Figure 11.7 Example of an alternate two-dimensional FFf computation proce
dure: (a) sampled waveform, (b) FFT of column data, (c) FFT of rows of part (b), 
and (d) reorganization of part (c). 

terpret this matrix of data as one period of a periodic two-dimensional func
tion. Figure 11.8 shows four periods of this sampled waveform. It is im
portant to observe the relationship of (row,column) indices for each period 
with the (row,column) indices within the dotted square. 

Example 11.7 Periodicity in Two Dimensions 

To further demonstrate the two-dimensional periodicity constraint, consider the sur
face shown in Fig. 11.9(a). Let us assume that it is desired to sample this surface 
and compute the two-dimensional FFT. Considerable care must be paid to the pe
riodicity constraint. A review of Fig. 11.8 points out that if we wish to sample the 
surface shown in Fig. 11.9(a), then it is necessary to actually sample the function 
illustrated in Fig. 11.9(b). Although this two-dimensional surface looks significantly 
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Figure 11.9 Example of two-dimensional waveform restructuring to satisfy pe
riodicity constraints. 

different from Fig. 11.9(a), the sampling periodicity constraint yields the original 
surface. 

Care must be exercised when setting up the two-dimensional matrix of sampled 
values to ensure that the function being FFTed is that which is actually desired. 
Recall that this warning is the same as that given in Chapter 9. 

Two-Dimensional Data Windows 

Recall from Chapter 9 that a potential negative effect of the periodicity 
constraint is to introduce truncation, a discontinuity or abrupt change in the 
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data between periods. Consequentially, FFT frequency-domain results ex
hibit oscillations or side lobes. A similar result is encountered with two
dimensional FFTs. 

In Fig. 11.1O(a), we show a sampled corrugated two-dimensional co
sinusoidal surface. Note that the sample values do not define exactly a mul
tiple of a period of the cosine waveform surface. As a result, truncation 
introduces a discontinuity between periods in the pTx dimension and the 

m 
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Figure 11.10 Graphical illustration of two-dimensional FFf results before a 
weighting function is applied. 
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two-dimensional FFT results shown in Fig. 11.10(b) exhibit large side lobes. 
As in the one-dimensional case, we use a weighting function to reduce the 
side lobes. 

The weighting function techniques discussed in Chapter 9 are directly 
extendable to two dimensions. As expected, a rectangular two-dimensional 
weighting function exhibits large side lobes (see Fig. 11.3). Haung [9] has 
shown that a good two-dimensional symmetrical weighting function w' ( .) 
can be obtained from a one-dimensional window from the relationship: 

w'(x,y) = w[(x2 + y2)1/2] I x2 + y21 < T'/2 (11.20) 

= 0 otherwise 

where w(·) is centered at [x = 0, y = 0] and T' is the truncation interval. 
Function w(·) is any weighting function such as Hanning or Dolph-Che
byshev. Figure 11.11 illustrates the two-dimensional Hanning weighting 
function as determined from Eq. 01.20) for M = N and as correctly posi
tioned with respect to the two-dimensional period. 

Figure I 1. 11 (b) illustrates the two-dimensional FFT results when the 
Hanning function is applied to the sampled waveform of Fig. 11.1O(a). As 
expected, side lobes are reduced with respect to Fig. 1 1. lO(b) , but the fre
quency function has been broadened in two dimensions. We have not rear
ranged the FFT results for conventional viewing. 

Two-Dimensional Inverse FFTs 

The two-dimensional inverse discrete Fourier transform is defined as 

p = 0, I, ... , N - 1 n = 0, I, ... , N - I 

q = 0, I, ... , M - 1 m = 0, I, ... , M - I 

(11.21) 

As in the direct transform case, we implement the inverse transform 
by first inverse transforming each row (or column) and then inverse trans
forming each column (or row) of the intermediate computation matrix. 

When applying the two-dimensional inverse FFT, we must be careful 
in setting up the spacial frequency-data matrix. Recall from Fig. 11.4(c) that 
the output of the two-dimensional FFT is not in the form for conventional 
viewing. To compute Eq. (11.21), we must ensure that the data is in the 
format of Fig. 11.4(c). If the data to be inversed transformed is in a format 
for conventional viewing, then we simply reverse the procedure illustrated 
in Fig. 11.5 before inputting the data to Eq. 01.21). This process is analogous 
to that described in Chapter 9 for computing the inverse FFT of a one-
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Figure 11.11 (a) Figure 11.10(a) multiplied by the two-dimensional Hanning 
weighting function, and (b) two-dimensional FFT of part (a). 
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dimensional frequency function. Equation 01.21) must be multiplied by the 
factor t:.ut:.v to obtain results equivalent to the continuous inverse two-di
mensional Fourier transform. 
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Two-Dimensional Sampling 

In the development of the two-dimensional discrete Fourier transform, 
we did not discuss the requirements imposed by the two-dimensional sam
pling theorem. To develop the theorem, we simply extend the one-dimen
sional concept. Ifwe are given a two-dimensional surface h(x,y) whose Four
ier transform is H(u,v), where 

H(u,v) = 0 (11.22) 

then we simply state the Nyquist criteria independently in the two dimen
sions. That is, we must sample h(x,y) to obtain h(pTx,qTy), such that T< and 
Ty satisfy the relationships 

Summary 

Tx :5 1I2uc 

Ty :5 1I2vc 
(11.23) 

A BASIC computer program for the two-dimensional FFT of an array 
W(n,m) is given in Fig. 11.12. The real component of the two-dimensional 
signal is placed in WIREAL(II%,JJ%) and the imaginary component is 
placed in WlIMAG(II%,JJ%). Parameters N%, NU%, M%, and MU% must 
be initialized. Real and imaginary spacial frequency-domain results are re
turned in WIREAL(II%,JJ%) and WlIMAG(II%,JJ%), respectively. Note 
that the program first computes the FFT of each column of the data array 
using the one-dimensional FFT program listed in Fig. 8.7. The program then 
computes the FFT of each row of the intermediate array, again using the 
one-dimensional FFT. XREAL(I%) and XIMAG(I%) should be dimensioned 
by the larger of N% or M%. Users must rearrange the output results for 
conventional viewing and scale by TxTy to obtain equivalence to the con
tinuous two-dimensional transform. 

Two-dimensional inverse FFTs can be computed with the program by 
first conjugating the spacial frequency function by exactly the procedure 
used in one-dimensional inverse transforms. 

In this section, we have developed the basic fundamentals for applying 
the FFT to the computation of the two-dimensional Fourier and inverse 
Fourier transforms. The discussion by no means has been exhaustive but 
the fundamental principles necessary for further investigations have been 
established. If one carefully extends the concepts of one-dimensional FFT 
analysis to each of the FFTs computed in the two-dimensional transform, 
then few difficulties should be encountered. As developed, the mathematics 
of two-dimensional transform analysis is sufficiently close to that of the one
dimensional case to justify such a conclusion. 
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9000 REM: TWO-DIMENSIONAL FFT SUBROUTINE- THE MAIN 
9002 REM: PROGRAM SHOULD DIMENSION THE DATA ARRAYS 
9004 REM: W1REAL( I I%,JJ%) AND W1 IMAG( I I%,JJ%). 
9006 REM: N%,NU%,M%, AND MU% MUST BE INITIALIZED. 
9008 REM: XREAL( 1%) AND XIMAG(J%) SHOULD BE DIMENSIONED 
9010 REM: THE LARGER OF N% OR M%. THIS PROGRAM 
9012 REM: CALLS THE FFT ROUTINE (FIG. 8-7) BEGINNING 
9014 REM: AT LINE 10000. 
9026 NN%=N%:NNU%=NU%:MM%=M%:MMU%=MU% 
9028 REM: COMPUTE THE FFT OF EACH COLUMN. 
9030 FOR JJ%=1 TO MM% 
9040 FOR 11%=1 TO NN% 
9050 XREAL( I 1%)=W1REAL( I I%,JJ%) 
9060 XIMAG(1 1%)=W1 IMAG(I I%,JJ%) 
9070 NEXT 11% 
9080 GOSUB 10000 
9090 FOR KK%=1 TO NN% 
9100 W1REAL(KK%,JJ%)=XREAL(KK%) 
9110 W1IMAG(KK%,JJ%)=XIMAG(KK%) 
9120 NEXT KK% 
9130 NEXT JJ% 
9140 REM: COMPUTE THE FFT OF EACH ROW. 
9150 FOR JJ%=1 TO NN% 
9160 FOR 11%=1 TO MM% 
9170 XREAL( I 1%)=W1REAL(JJ%, I 1%) 
9180 XIMAG( I 1%)=W1 IMAG(JJ%, I 1%) 
9190 NEXT 11% 
9200 N%=MM%:NU%=MMU% 
9210 GOSUB 10000 
9220 FOR KK%=1 TO MM% 
9230 W1REAL(JJ%,KK%)=XREAL(KK%) 
9240 W1IMAG(JJ%,KK%)=XIMAG(KK%) 
9250 NEXT KK% 
9260 NEXT JJ% 
9270 N%=NN%:NU%=NNU% 
9280 RETURN 
9290 END 

Figure 1l.12 Subroutine in BASIC for computing the two-dimensional FFf. 

11.3 TWO-DIMENSIONAL CONVOLUTION 
AND CORRELATION 

The convolution integral for two-dimensional functions is defined as 

g(x,y) = I-'''''oo J:oo r(Tx,Ty)h(x-Tx,y-Ty)dTxdTy = r(x,y) ** h(x,y) 

255 

(11.24) 
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Interpretation of Eq. 01.24) is analogous to the one-dimensional case, as 
we demonstrate in the following graphical analysis. 

Graphical Evaluation 

Let r( T x, T y) and h( T x, T y) be given by the graphs shown in Figs. I 1. 13(a) 
and (b), respectively. For ease of presentation, we do not show the ampli
tudes of the two-dimensional functions. To evaluate Eq. 01.24) for the point 
g(x' ,Y '), function hex' - Tx,Y' - T y) is required. From Fig. 11.13(c), note that 
h( -Tx , -Ty) is obtained by rotating h(Tx,Ty) 1800 about the origin. Function 
hex' -Tx,Y' -Ty) is obtained by displacing h( -Tx , -Ty) by the amount x' 
along the T x axis and by the amount y' along the T y axis, as illustrated in 
Fig. 11.13(d). The volume (double integral) of the product r(Tx,Ty) x 
h(x'-Tx,y'-Ty) yields the convolution result g(x',y'). 

Example 11.7 Two-Dimensional Convolution: Line Functions 

An example of two-dimensional convolution is illustrated in Fig. 11.14. The two 
functions to be convolved are shown in Figs. 11.I4(a) and (b). Because h(x,y) is 

T, 
T, 

h(T •• T,) 

(a) (b) 

T, 

h(' ·T •. y· 'T,) 
T, 

h(-T •• ·T,) 

(e) (d) 

Figure 11.13 Graphical evaluation of two-dimensional convolution. 
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symmetrical about the Ty axis, then the 1800 rotation required by Eq. (11.23) yields 
the same function, h(Tx,Ty ) = h( -T" -Ty ), as shown in Fig. 11.14(a). Figure 11.14(c) 
shows the displacement function h(x' -Tx,y'-Ty ); multiplication with r(T"Ty ) and 
integration yields the spacial point of the resulting two-dimensional convolution il
lustrated in Fig. 11.14(d). 

Example 11.8 Two-Dimensional Convolution: Impulse Functions 

To demonstrate two-dimensional convolution involving impulse functions, consider 
Fig. 11.15. In Fig. 11.15(a), we show a two-dimensional sequence of impulse func
tions. The impulse functions are separated by Tx in the x dimension and by Tv in 
the y dimension. The function to be convolved with these impulses is shown in Fig. 
11.15(b). 

For ease of presentation, we have deleted the amplitude information of Figs. 
11.15(a) and (b) and show only the length, width, and displacement information in 
Figs. 11.15(c) and (d). To convolve Figs. 11.15(c) and (d), recall from Chapter 4 that 
convolution with an impulse function requires centering the function to be convolved 
on the impUlse. The resulting convolution is shown in Figs. 11.15(e) and (t). Results 
of this example can be extended to graphically demonstrate the two-dimensional 
sampling theorem (Prob. 11.15). 

T, 
T. 

T, 
T. 

(a) (b) 

glx,y) 

g(x',y') 

T. 

H(XI_Tx,yl_Ty) 

Ie) Id) 

Figure 11.14 Graphical example of two-dimensional convolution of line functions. 
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g(x.v) 

/ 
/ hlx.v) 

t t V 
/ + • / 

x 

• 
v 

(a) Ib) 

• • • • 

• • • • -:-1 
v v 

Ie) (d) 

g(x.V)"h(x,V) 

v 

(e) If) 

'Figure 11.15 Graphical example of two-dimensional convolution with impulse 
functions. 

x 

x 



Sec. 11.3 Two-Dimensional Convolution and Correlation 259 

Example 11.9 Two-Dimensional Convolution: Amplitude Determination 

To further illustrate two-dimensional convolution, consider the square surfaces 
shown in Fig. 11.16(a). Both functions have unity amplitude. As shown in Fig. 
11.16(b), the dimensions of the nonzero convolution result is a square (a + b) on a 
side. Constant-amplitude contours are also shown. The amplitude of the convolution 
result along the x axis is shown in Fig. 11.16(c); appropriate shifts and integration 
areas required to evaluate example amplitude values on the x axis are also shown. 

Two-Dimensional Convolution Theorem 

We can compute the two-dimensional convolution by multiplication in 
the Fourier transform domain. Hence, if r(x,y) and h(x,y) are two waveforms 

V 

a 

'VI "2 

·a 0 a 
2: 2: 

·a 
2: 

T, 

x 

(al 

·b 
2: 

T, 

(cl 

(bl 

T, 

T, 

x;: a+b 
2 

T, 

Figure 11.16 Graphical example of amplitude computation in two-dimensional 
convolution. 
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with transforms R(u,v) and H(u,v), respectively, then 

r(x,Y) ** h(x,y) ~ R(u,v)H(u,v) (11.25) 

To show the relationship of Eq. (11.25), we apply the one-dimensional trans
form interpretation of the two-dimensional Fourier transform, which was 
developed in Eqs. (11.7) to (11.9). 

If Zr(U,y) and Zh(U,y) are the one-dimensional transforms of r(x,y) and 
h(x,y) with respect to x, respectively, we can write from the one-dimensional 
convolution theorem: 

(11.26) 

Hence, 

f:", f:", r(Tx,Ty)h(x-Tx,y-Ty)dTxdTy ~ f:oo Zr(U,Ty)Zh(U,y-Ty)dTy 

~ R(u,v)H(u,v) 

(11.27) 

which is Eq. (11.25). As in the one-dimensional case, we utilize the two
dimensional convolution theorem as a means for applying the FFT to com
pute the two-dimensional convolution. 

Two-Dimensional Correlation 

The two-dimensional correlation integral is given by 

p(x,y) = f:"" f:", r(Tx,Ty)h(x+Tx,y+Ty)dTx dTy (11.28) 

As in the one-dimensional case, Eq. (11.28) implies that we do not fold the 
function h(x,y) prior to the shifting operation. With this exception, the pre
viously developed graphical analysis techniques apply. 

The correlation theorem is given by 

f:", f:", r(Tx,Ty)h(x+Tx,y+Ty)dTx dTy ~ R*(u,v)H(u,v) (11.29) 

where the notation R*(u,v) implies a conjugate operation on both the vari
ables u and v. 

11.4 TWO-DIMENSIONAL FFT CONVOLUTION 
AND CORRELATION 

A two-dimensional FFT convolution is computed in exact analogy with one
dimensional FFT convolution. The two-dimensional discrete convolution 
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relationship is given by 
M-I N-I 

g(pTx,qTy) = L L r(iTx,jTy)h[(p - i)Tx,(q - j)Ty] 
j=O ;=0 

p = 0, 1, ... , N - 1 i = 0, 1, ... , N -

q = 0, 1, ... , M - 1 j = 0, 1, ... , M - 1 

(11.30) 

where g(pTx,qTy), r(pTnqTy), and h(pTx,qTy) are periodic functions with 
periods NTx and MTy in the x and y coordinates, respectively. 

We use the frequency convolution theorem to compute the discrete 
convolution by means of the FFT. First, we compute the two-dimensional 
FFT of the functions rCiTx,jTy) and hCiTnjTy): 

R(nINTx,mIMTy) = M:i I [N:i I r(pTx,qTy)e -j2-rrnPIN] e -j2-rrmqIM 
q=O p=o 

(11.31) 

n = 0, 1, ... , N -

p = 0, 1, ... , N - 1 
(11.32) 

m = 0, 1, ... , M - 1 

q = 0, 1, ... , M -

Next, we compute the product R(nINTx,mIMTy)H(nINTx,mIMTy) (taking 
into account that both functions are in general complex), and then we com
pute the inverse FFT of this product: 

g(pTx,qTy) = (1INM) :~~ [:~~ R(nINTx,mIMTy) 

x H(nINTnmIMTy)ej2-rrnPIN] ej2-rrmqlM 

(11.33) 

The convolution result appears in the real array of the FFT output. 
Because Eq. (11.30) represents a periodic convolution of the periodic 

sampled function r(pTx,qTy) and h(pTx,qTy), then we must ensure that these 
sampled functions contain sufficient zero values to prevent the end effect 
or circular convolution. In general, if a nonzero-value function of dimension 
(N I,M d is convolved with a second nonzero-value function of dimension 
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(N2,M2), the resulting function is of dimension (N] + N2 - I,M] + M2 
- I). Hence, we should append sufficient zeros to each of the functions, 
as illustrated in Fig. 11.17, to accommodate this relationship. The appendage 
of additional zeros may be necessary to make the number of data samples 
in each row and column compatible with the FFT algorithm being used. 
After zeros have been appended to functions r(pTx,qTy) and h(pTx,qTy), 
then we apply Eqs. (11.31) to (11.33). The result is the desired two-dimen
sional convolution. All results must be multiplied by the scale factor TxTy 
to approximate the continuous two-dimensional convolution integral. 

Example 11.10 Two-Dimensional Convolution 

To illustrate the procedure for implementing a two-dimensional discrete convolution 
by means of the FFT, consider the two data arrays shown in Fig. 11.18(a). We note 
that the two arrays are of dimension (2,2) and (2,4). Hence, the convolution result 
is of dimension (3,5) and sufficient zeros must be appended to each array to increase 
its respective dimensions to this size to prevent the end effect or circular convolution. 
For a base-2 FFT algorithm, we must add zeros to each data array to obtain data 
arrays of dimension (4,8). The augmented data arrays are illustrated in Fig. 11.18(b). 
We input the data arrays of Fig. 11.18(b) to Eqs. (11.31) and (11.32) and then im
plement Eq. (11.33). The result of this procedure is shown in Fig. 11.18(c). 

Example 11.11 Two-Dimensional Convolution When One Function Is Separable 

If one of the functions to be convolved is separable, that is, 

(11.34) 

then the two-dimensional discrete convolution can be accomplished by repeated 
evaluations of one-dimensional discrete convolutions. To show this, substitute Eq. 
(11.34) into Eq. (11.30): 

M-\ N-\ 

g(pTx,qTy) = L L r](iTx)r2(jTy)h[(p - i)Tx,(q - j)Ty] 
j=O ;=0 (11.35) 

The term inside the brackets is a one-dimensional convolution, which is evaluated 
for each value of i, where i = 0, 1, ... , N - I. That is, we convolve the function 
r2(jTy) with each row of the data matrix h[iTxJTy]. This resulting data matrix is then 
convolved, by column, with the function r\(iTx), as described by Eq. (11.35). 

ZEROS 

ZEROS 

M,+M,·l'-----------' 

Figure 11.17 Appending zeros in two-dimensional FFT convolution to avoid the end effect. 
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iT. 
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-1-0-0-1 ____ 

I 
3 2 1 3 2 
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JT, , 
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iT, , 
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I IT. I IT. 
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I I 
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00000000 00000000 
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Figure B.IS Base-2 example of appending zeros in a two-dimensional FFr con
volution to avoid the end effect. 

To develop the FFT computational approach to this two-dimensional convo
lution case, we use the following relationship for separable functions (see Prob. 11.3): 

(11.36) 

Application of the FFT convolution theorem procedures described by Eqs. (11.31) 
to (11,33) requires that we determine the product 

R(nINTx,mIMTy)H(nINTx,mIMTy) 

(11.37) 

Recall that N + M one-dimensional FFTs are required to determine R(nl NTx ,ml 
MTy). However, because r(pTx,qTy) is separable, only 2 one-dimensional FFTs are 
required. The computational savings is readily apparent and the utilization of sep-
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arable filter functions in two-dimensional signal-processing applications is common 
because of these computational simplifications. 

Two-Dimensional FFT Correlation 

The two-dimensional discrete correlation function is given by the 
relationship 

M-I N-I 

~(pTx,qTy) = L L r(iTxJTy)h[(p + i)Tx, (q + J)Ty] 
j=O ;=0 

p = 0, 1, ... , N - 1 (11.38) 

q = 0, 1, ... , M - 1 

where ~(pTx,qTy), r(pTx,qTy), and h(pTx,qTy) are periodic functions with 
periods NTx and MTy in the x and y coordinates, respectively. To apply the 
two-dimensional FFT to the computation of Eq. (11.38), we follow the pro
cedures previously developed for the FFT discrete convolution theorem 
except that we apply the two-dimensional discrete correlation theorem. 

Summary 

A BASIC computer program for computing a two-dimensional con
volution using the FFT is given in Fig. 11.19. The data to be convolved are 
stored in arrays WIREAL(II%,JJ%) and W2REAL(II%,JJ%) and the im
aginary arrays WlIMAG(II%,JJ%) and W2IMAG(II%,JJ%) should be set to 
zero for real functions. Two-dimensional convolution results are returned 
in arrays WIREAL(II%,JJ%) and W2REAL(II%,JJ%) and must be scaled 
by TxTy. Note that the program branches to the two-dimensional FFT pro
gram listed in Fig. 11.12 and hence also branches to the one-dimensional 
FFT program listed in Fig. 8.7. N%, NU%, M%, and MU% must be ini
tialized and XREAL(I%), and XIMAG(I%) must be dimensioned to the 
larger of N% or M%. The reader is responsible for preventing convolution 
end effects. 

Two-dimensional signal processing often involves large data matrices 
that can exceed computer memory capacity. For this reason, these types of 
data are normally stored on magnetic disk or tape units. As a result, one 
encounters a data-access problem. Recall that the two-dimensional FFT can 
be computed by first performing a one-dimensional FFT on each row of 
data. If the data is stored sequentially by rows, then data access for this 
step is straightforward. However, the next step in computing the two-di
mensional transform requires performing the FFT on the columns of the 
matrix that is generated by row transforms. We now encounter a memory
access problem in extracting column data. One could transpose the matrix, 
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8000 REM: TWO-DIMENSIONAL FFT CONVOLUTION PROGRAM- THE 
8002 REM: MAIN PROGRAM SHOULD DIMENSION THE DATA 
8004 REM: ARRAYS W1REAL( I 1%,JJ%),W1 IMAG( I I%,JJ%), 
8006 REM: W2REAL( I I%,JJ%) ,W2IMAG( I I%,JJ%) AND 
8008 REM: DUMMY ARRAYS W3REAL( I I%,JJ%), W3IMAG( I I%,JJ%). 
8010 REM: N%,NU%,M%, AND MU% MUST BE INITIALIZED. 
8012 REM: XREAL( 1%) AND XIMAG( 1%) SHOULD BE DIMENSIONED 
8014 REM: THE LARGER OF N% OR M%.THE PROGRAM CALLS 
8016 REM: THE TWO-DIMENSIONAL FFT ROUTINE(FIG. 11.12) 
8018 REM: BEGINNING AT LINE 9000, WHICH IN TURN CALLS 
8020 REM: THE ONE-DIMENSIONAL FFT PROGRAM (FIG. 8.7) 
8022 REM: BEGINNING AT LINE 10000. 
8024 REM: COMPUTE THE TWO-DIMENSIONAL FFT OF W1(N,M) 
8030 GOSUB 9000 
8040 FOR 11%=1 TO N%. 
8050 FOR JJ%=1 TO M% 
8060 W3REAL( I 1%,JJ%)=W1REAL(1 I%,JJ%) 
8070 W3IMAG( I 1%,JJ%)=W1 IMAG(I I%,JJ%) 
8080 W1REAL( I 1%,JJ%)=W2REAL(1 I%,JJ%) 
8090 W1 IMAG( I 1%,JJ%)=W2IMAG( I I%,JJ%) 
8100 NEXT JJ% 
811 0 NEXT I 1% 
8120 REM: COMPUTE THE TWO-DIMENSIONAL FFT OF W2(N,M) 
8130 GOSUB 9000 
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8140 REM: COMPUTE THE PRODUCT OF W1( I I%,JJ%) AND W2( I I%,JJ%) 
8150 FOR 1%=1 TO N% 
8160 FOR J%=1 TO M% 
8170 W2REAL( 1%,J%)=W1REAL( I%,J%) 
8180 W1REAL( 1%,J%)=W1REAL(I%,J%)*W3REAL( I%,J%) 

-W1 I MAG ( 1%, J%) *W3 I MAG ( 1%, J%) 
8190 W1 IMAG( 1%,J%)=-W2REAL(I%,J%)*W3IMAG( I%,J%) 

-W1 I MAG ( 1%, J%) *W3REAL ( 1%, J%) 
8200 NEXT J% 
8210 NEXT 1% 
8220 REM: COMPUTE THE TWO-DIMENSIONAL FFT OF THE 
8222 REM: PRODUCT CONJUGATE 
8230 GOSUB 9000 
8240 RETURN 
8250 END 

Figure 11.19 Subroutine in BASIC for two-dimensional FFT convolution. 
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but this is not possible if the matrix exceeds the computer memory. Ref
erences [10] to [12] propose various methods for partitioning the matrix so 
that it will fit into available memory. Alternate transposition procedures are 
described in Refs. [14] to [17]. Another approach to efficient computation 
of the two-dimensional discrete transform is to derive a direct two-dimen
sional FFT. This method is described in Refs. [18] and [19]. An excellent 
introduction to the field of digital image processing is presented in Oppen
heim [5]. 

PROBLEMS 

11.1 Prove each of the following properties of the two-dimensional Fourier trans
form directly from the defining relationships of Eqs. (11.1) and (11.13): 
(a) Addition: 

h(x,y) + g(x,y) <0 H(u,v) + G(u,v) 

(b) Shifting: 

h(x - a,y - b) <0 e- j2-rr(au+bv)H(u,v) 

(c) Modulation: 

h(x,y) cos(21rfox) <0 Y2 H(u + fo,v) + Y2 H(u - fo,v) 

(d) Scaling: 

h(ax,by) <0 (II I ab I )H(ula,vlb) 

h(x,y)e j2-rr(ax+by ) <0 H(u - a,v - b) 

(e) Convolution: 

h(x,y) ** g(x,y) <0 H(u,v)G(u,v) 

11.2 Repeat Prob. 11.1 but derive all results from a one-dimensional viewpoint 
utilizing the relationships of Eqs. (11.8) and (11.9) and the one-dimensional 
Fourier transform. 

11.3 If a function h(x,y) is separable such that 

h(x,y) = hI (x)h 2(y) 

then the two-dimensional Fourier transform of h(x,y), that is, H(u,v) is 
separable: 

Prove this result. 
11.4 Determine the two-dimensional Fourier transform of the following: 

(a) h(x,y) = cos(21ruoX) 
(b) h(x,y) = sin(21TvoY) 
(c) h(x,y) = cos{21r[x cos(e) + y sin(e)]} 
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(d) h(x,y) = 

(e) h(x,y) = 

(f) h(x,y) 

(g) h(x,y) 
(h) h(x,y) 
(i) h(x,y) 

sin(21Tuox) sin(21TvoY) 
cos(21TUox) sin(21TvoY) 
sin(21Tuox) sin(21TvoY) 

21TUox 
8(y) 

21TVoY 

cos(21TVoY )8(x) 
I (x 2 + y2)112 < ~ 

= 0 otherwise 
11.5 Parseval's Theorem for one-dimensional functions is given by 

Derive the corresponding relationship for two-dimensional functions. 
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11.6 Figure 11.2(a). can be redrawn in terms of lines of zero phase, as illustrated 
in Fig. 11.20. Develop analytic expressions for the following: 
(a) A function of the form y = mx + Tib for the zero-phase lines, where m 

is the slope, b is the y intercept, and Ti is an integer. 
(b) An expression for 8 in terms of the spacial frequency terms Uo and Vo. 
(c) An expression for L, the spatial period, i.e., the distance between zero

phase lines. 

11.7 If we introduce the polar coordinates x = r cos(8), y = r sin(8), U = w cos(<I», 
and v = w sin(<I», then h(x,y) and H(u,v) become hp(r,8) and Hp(w,<I», re
spectively, where 

hp (ar,8 + 80 ) 0 (l/a 2)Hp (w/a,<I> + 80 ) (11.39) 

Note that Eq. (11.39) states that if h(x,y) is rotated through an angle 80 , then 
the transform H(u,v) is also rotated through the angle 80 , Derive Eq. (11.39). 

Figure 11.20 Function for Prob. 11.6. 
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Hint: 

h(ax + by,cx + dy) ~ (11 I ad - cd I )h(Au+Bv,Cu+Dv) 

where 

11.8 An interesting special case of two-dimensional discrete Fourier transforms 
occurs when the sampled function h(pTx,qTy) separates as hl(pTx)h2(qTy), 
where p = 0, 1, ... , N - 1 and q = 0, 1, ... , M - 1. Show that in this 
case the discrete Fourier transform H(n/ NT,ml MT) can be evaluated by one 
N-point FFT and one M-point FFT. 

11.9 Figure 11.4 shows the two-dimensional FFT as a set of one-dimensional FFTs 
on the rows of the data matrix followed by a set of one-dimensional FFTs on 
the columns of the data matrix computed in the first step. Show by sketches, 
as in Fig. 11.4, that equivalent results can be obtained by FFTing first the 
columns of the data array followed by the rows of the intermediate computed 
array. 

11.10 Consider the sampled waveform shown in Fig. 11.21. Analytically compute 
the two-dimensional discrete Fourier transform by using one-dimensional 
transforms: 
(a) Transform each column and then each row of the result. 
(b) Transform each row and then each column of the result. 

11.11 Develop an alternate inversion formula for two-dimensional transforms that 
allows one to use the forward two-dimensional FFT. 

11.12 In Chapter 8, we developed techniques for increasing the efficiency of the 
one-dimensional FFT for the case of real data. If only two-dimensional real 
data are being considered, develop the procedures and appropriate relation
ships for the following: 
(a) Computing the two-dimensional FFToftwo real functions simultaneously. 
(b) Computing the two-dimensional FFT of a (2N,2M) real data array with 

an (N,M) two-dimensional FFT program. 

11.13 It is of value to consider two-dimensional convolution and correlation from 
an area viewpoint without regard to amplitude. For each of the functions il
lustrated in Fig. 11.22, determine the area function (i.e., follow Fig. 11.11) for 
both convolution and correlation. 

11.14 If a small two-dimensional area is to be convolved with a much larger two
dimensional area, then sectioning techniques as developed in Chapter 10 must 
be used. Extend the overlap-add sectioning technique to two-dimensional 
convolution. 

11.15 Figure 11.15 develops the basic concepts of two-dimensional convolution in
volving impulse functions. By using this approach, extend the two-dimensional 
Nyquist sampling criteria development of Fig. 5.3 to two dimensions. Assume 
that the transform H(u,v) is band-limited according to Eq. (11.23). 

11.16 Develop a two-dimensional FFT computer program. An input variable should 
allow the output to be in either a conventional viewing format or standard 
two-dimensional FFT format. 
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Figure 11.21 Sampled waveform for Prob. 11.10 . 
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Figure 11.22 Functions for Prob. 11.13. 
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11.17 Apply the program developed in Prob. 11.16 to the two-dimensional waveform 
for Fig. 11.I(a). Explain any differences with the theoretical transform results 
of Fig. Il.l(b). 

11.18 Compute the two-dimensional FFT of the function shown in Fig. 11.7. 

11.19 Compute the two-dimensional FFT of the waveform shown in Fig. 11.2(a). 
Explain any differences with the theoretical transform results of Fig. 11.2(b). 

11.20 Apply the two-dimensional Hanning weighting function to the results of Prob. 
11.18. 
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12 

FFT DIGITAL FILTER DESIGN 

Digital filtering is the realization of the convolution integral in discrete form. 
Recall from Ex. 4.4 that the output of a linear system is determined by 
convolving the system impulse response h(t) with the system input waveform 
x(t). Common signal-processing terminology characterizes h(t) as a filter, 
that is, the input signal x(t) is filtered by a system with filter impulse response 
h(t) to produce the output signal y(t). 

A straightforward realization of a digital filter can be achieved by sam
pling the impulse response h(t) and performing the discrete convolution op
eration with the sampled input waveform x(kT). In the literature, this design 
approach is termed a Finite-Impulse Response (FIR) filter because the sam
pled impulse response h(kT) is described by N samples. FIR digital filters 
require considerable computational complexity because each system output 
value y(kT) requires multiplication of the N samples of the sampled impulse 
response h(kt) with N sample values of the input signal x(kT) and N - 1 
additions of these product terms. 

Computational complexity can be reduced significantly by imple
menting digital recursive filters. Recursive filtering, as the name implies, is 
realized by expressing the discrete convolution equation as a summation of 
weighted input sample values x(kT) and a weighted sum of previously com
puted output values: 

13 

y(kT) ~ a;x[(k - i)T] + ~ biy[(k - j - l)T] (12.1) 
;=0 

272 
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Recursive filters can reduce the required number of multiplications by an 
order of magnitude with respect to a FIR filter implementation. However, 
the design of a recursive digital filter is complicated if the filter function to 
be realized is not characterized by a well-defined analytical function [1]. 

In this chapter, we discuss the basic techniques for applying the FFT 
to the design and implementation of nonrecursive (i.e., FIR) digital filters. 
FFT digital filter design can be accomplished by two basic techniques. We 
can begin with the desired time-domain impulse response of the filter (time
domain specification) or with the desired filter frequency-domain response 
function (frequency-domain specification). In either case, the filter response 
function can be specified by an analytic function or by experimental samples. 
FFT digital filter designs are particularly valuable where the impulse or 
frequency response of the filter has been determined experimentally. Unless 
the experimental data describes a well-known filter shape, then the design 
of a suitable recursive digital filter is extremely time consuming (or 
impossible). 

Our design approach is focused on design-time efficiency and the prac
ticality of implementation. Practicing professionals must constantly evaluate 
the time required to design a better digital filter against the savings in data
processing time that results from a more elegant filter design. The FFT design 
approach presented here is best suited for quick-solution laboratory analysis 
or for signal-processing problems involving unconventional filter response 
functions. Our discussion of system-simulation analysis in Chapter 14 is an 
example where our techniques are more efficient to apply than more elab
orate design techniques. 

12.1 FFT TIME-DOMAIN DIGITAL FILTER DESIGN 

Assume we are given the time-domain impulse response of a desired filter 
graphically, analytically, or as numerical values determined from an exper
iment. It is desired to design a nonrecursive digital filter that produces results 
equivalent to the specified filter. The digital filter is to be implemented by 
FFT convolution techniques (Chapter 10) and, therefore, its impulse re
sponse must be of finite duration. The design of a FFT digital filter from a 
time-domain specification is very similar to the development of the discrete 
Fourier transform that is graphically developed in Fig. 6.2. 

Design Procedure 

If the time-domain specification is an analytical function, we begin our 
design by sampling the given impulse-response function. For an experi
mentally obtained impulse function, we begin with the numerical sampled 
values. In both cases, we require that the sample interval T is sufficiently 
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small to produce negligible aliasing. Because the FFT is used to implement 
the designed digital filter, it may be necessary to truncate the sampled im
pulse response. If truncation is not required, we know from Chapter 6 that 
the discrete Fourier transform of the digital filter is a good approximation 
to the continuous Fourier transform of the specified analog filter. The sam
pled impulse-response function thus satisfies the digital filter design goal in 
that its frequency function is a good approximation to the specified frequency 
function. Further, the filter can be implemented by means of FFT convo
lution techniques. 

Recall from Table 10.2 that efficient application of FFT sectioning tech
niques requires that the fillter impulse response be represented by a small 
number of samples with respect to N, the number of sample values to be 
FFTed. If an experimenter's computer capacity accommodates a digital filter 
designed without impulse-response truncation, then the design is complete. 
However, it is often the case that the number of nonzero samples that define 
the impulse response of the digital filter must be minimized. 

The number of nonzero samples of the impulse-response function can 
be modified by multiplication with a truncation (weighting) function. As 
shown in Figs. 6.2(d) and (e), time-domain truncation can introduce ripples 
in the frequency function unless a weighting function that smoothly tapers 
to zero is used. To determine an acceptable truncation width, we experi
mentally decrease the width, or duration, of the weighting function until the 
resulting digital filter frequency function as computed with the FFT differs 
unacceptably from the desired analog frequency function. The minimum 
width of the weighting function that yields acceptable results corresponds 
to a minimum impulse-response duration and hence a more efficient FFT 
implementation. 

Example 12.1 FFT Digital Filter Design: Time-Domain Specification 

To illustrate the FFT filter design procedure, consider the filter impulse function: 

I ~ 0 

= 0 1<0 

The Fourier transform is given by 

where 

H(f) = 0. 2/(0. + J27rf)2 

= I H(f) I ejo(f) 

I H(f) I = 0.2/{[0.2 - (27rfff + (47rfo.f}I/2 

6(f) = tan -I{ -47rfo./[0.2 - (27rf)2]) 

(12.2) 

(12.3) 

(12.4) 

(12.5) 

The parameter 0. was chosen as 27r to yield a filter frequency-domain 6 dB cUloff 
frequency of 1 Hz. We show the time-domain impulse response function ofEq. (12.2) 
and the amplitude and phase response functions of Eqs. (12.4) and (12.5) in Figs. 
12.1(a) and (b), respectively. 
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Figure 12.1 Example filter continuous time- and frequency-domain response functions. 
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To sample the impulse response of Eq. (12.2), we must choose the sample 
interval T. We know that T must be sufficiently small to minimize the effect of 
aliasing. Let us assume that our design goal is a digital filter whose magnitude re
sponse approximates that shown in Fig. 12.I(b) to approximately 500 Hz. As a result, 
we must ensure that we choose the sample interval T such that aliasing is negligible 
up to a frequency of 500 Hz. For a sampling frequency fs = 1000 Hz, thefo/dover, 
or aliasing, frequency is f s l2 = 500 Hz, and we have ensured that aliasing is rea
sonably negligible below 500 Hz. 

We next choose the maximum number of sample values N that can be con
veniently FFTed. We assume for purposes of discussion that N = 2048. With T = 

IIfs = 0.001 and N = 2048, we sample Eq. (12.2) to obtain 

k = 0, I, ... , 2047 (12.6) 

The 2048 samples of Eq. (12.6) represent an impulse duration of 2.048 s. We observe 
from Fig. 12.I(a) that the choice of 2048 samples (or 2.048 s) introduces negligible 
truncation. Hence, we expect the FFT of the sampled impulse response and the 
continuous Fourier transform to agree closely. The FFT of the function given by 
Eq. (12.6) for the chosen parameters is essentially the same as samples of Fig. 12.I(b). 

The next step in our time-domain FFT digital filter design procedure is to 
truncate the impulse response in order to minimize the number of near-zero sample 
values. From Table 10.2, the number of samples representing the impulse-response 
function should not exceed 299 for efficient FFT convolution with a 2048-point trans
form. Hence, we will experimentally sequentially reduce the width of the truncation 
function with a goal of reducing the digital filter impulse-response duration to 299 
sample values (0.299 s). 

To truncate the sample impulse response of Eq. (12.6), we have arbitrarily 
chosen for discussion the rectangular and Hanning truncation (or weighting) func
tions. Hence, for the rectangular truncation function, we compute 

h(kT) = h(kT) 

= 0 

O:sk:sWHIT 

WHIT < k :s N - WHIT 

and for the Hanning truncation function, we compute 

h(kT) = h(kT)[ 112 + 1/2 cos('lTkTIW H)] 

= 0 

o :s k :s WHIT 

WHIT < k:s N - WHIT 

(12.7) 

(12.8) 

We then compute the FFT of Eqs. (12.7) and (12.8) to determine the frequency 
characteristics of the truncated filter. 

If we choose W H to reduce the impulse response to 1 s (i.e., 1000 samples), 
then the results of truncation become apparent. In Fig. 12.2(a), we see that rectan
gular truncation produces a small rippling effect. Application of the Hanning trun
cation function produces the digital filter shown in Fig. 12.2(b), which rather closely 
approximates the desired amplitude- and phase-response characteristics. Note the 
effects of aliasing on the amplitude response around 500 Hz. 

The digital filter illustrated in Fig. 12.2(b) is characterized as one of 
quick and easy design. However, the filter impulse response is represented 
by 1000 nonzero sample values. The designer must evaluate the trade-off 
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between increased design time and decreased processing time for a filter 
with a reduced number of nonzero sample values. In general, we recommend 
that the designer accept the inefficiency of implementation caused by the large 
number of nonzero sample values of the filter impulse response unless there 
are compelling reasons to further decrease data-processing time. 

To reduce this number of samples, we decrease W H. The digital filter 
approximation to the desired characteristics continue to degrade as W H is 
decreased. Figure 12.3(a) illustrates amplitude and phase functions resulting 
from rectangular truncation with W R = 0.5 s (500 samples). As shown, 
rectangular truncation produces unacceptable rippling. In Fig. 12.3(b), we 
show the filter design characteristics with Hanning truncation width W H = 

0.5 s. Although the design approximates rather closely the theoretical re
sponse, the amplitude function differs from the desired frequency response 
in that the low-frequency components have been attenuated by approxi
mately 4 dB. 

Hanning truncation reduces the area under the impulse-response func
tion and, as a result, produces the attenuation that we observe. Recall that 
the Fourier transform for zero frequency is simply the integral or area of 
the impulse-response function. If this attenuation is objectionable for the 
digital filter design of concern, then the effect can be partially compensated. 
We simply multiply the truncated impulse response by the appropriate con
stant that yields a windowed impulse response with an area equal to that of 
the theoretical impulse-response function. 

Figure 12.4 illustrates the amplitude-response functions obtained by 
multiplication by the appropriate constant to increase the area of the trun
cated impulse response. A comparison of the truncated impulse response of 
Fig. 12.4 and the truncated impulse response of Fig. 12.3(a) illustrates the 
effect of multiplication. 

The amplitude-response function that results from multiplication agrees 
more closely with the desired response at the lower frequencies but is shifted 
to the right at higher frequencies. That is, the amplitude-response charac
teristic shows the 6 dB cutoff is at approximately 1.5 Hz rather than at the 
desired 1 Hz. If the exact cutoff frequency is of importance, then we can 
begin our design procedure with a specified cutoff frequency that is lower 
(i.e., 0.5 Hz). The phase-response function is not affected by the multipli
cative constant. 

For W H = 0.5 s, we have developed a digital filter represented by 500 
samples values. Although we have not reached our goal of 299, recall from 
the discussion of Sec. 10.3 that an increase of this optimum number of sam
ples by a factor of 2 increases computing time only slightly. As a result, this 
digital filter can be implemented efficiently by FFT convolution techniques. 

In summary, we have followed the design procedure of successively 
reducing parameter W H, the truncation function width. We note that in each 
reduction of the parameter W H, we must accept a compromise in the digital 
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filter design. As W H is decreased, we encounter an increased spreading of 
the frequency function. Hence, a design for maximum implementation ef
ficiency (Le., minimum number of sample values) deviates from the desired 
characteristics. However, if we are willing to represent the impulse response 
by a large number of sample values, then, as shown, we can achieve an 
excellent approximation to the specified filter frequency response and the 
design can be achieved very efficiently. 

12.2 FFT FREQUENCY-DOMAIN DIGITAL FILTER DESIGN 

Frequency-domain specification of a filter implies that the digital filter design 
begins with an analytical expression for the frequency response of a filter 
or with numerical values of amplitude and phase obtained from an experi
ment. As in the time-domain specification case, the goal is to design a digital 
filter that approximates the given frequency response and that can be im
plemented by FFT convolution. One could claim that this is identical to the 
previous discussion; however, there are subtle design differences in the two 
developments. In this section, we will investigate these differences as well 
as develop the fundamentals of FFT frequency-domain digital filter design. 
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Graphical Development 

Consider the time- and frequency-response functions of the example 
filter shown in Fig. 12.5(a). Our approach to digital filter design follows the 
presentation used to develop the discrete Fourier transform in Chapter 6. 
Because we assume that the filter characteristics are known to us only in 
the frequency domain, it is necessary to first sample in the frequency domain. 
The frequency-sampling function and its inverse Fourier transform are 
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Figure 12.5 Graphical development of FFT digital filter designed from a fre
quency-domain specification. 
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shown in Fig. 12.5(b). From the time-convolution theorem, the resulting 
sampled frequency function and its inverse Fourier transform are shown in 
Fig. 12.5(c). Because sampling in the frequency domain corresponds to con
volution in the time domain, we can have time-domain aliasing. It is nec
essary that the frequency-domain sampling period liTo is sufficiently small 
to ensure that time-domain aliasing is negligible. As illustrated in Fig. 12.5(c), 
aliasing is negligible for this example. 

Because only a finite number of sample values of the frequency function 
can be inverse Fourier transformed, it is necessary to truncate the sampled 
frequency function. As illustrated in Fig. 12.5(d) we attempt to ensure that 
the truncation function significantly exceeds the width of the frequency func
tion. A rectangular truncation function is used to simplify the graphical 
development. 

We recognize that the wider one allows the frequency-truncation func
tion to become, the larger the number of sample values representing the 
impulse response becomes. Our design approach ultimately reduces the 
number of impulse-response samples by employing a time-domain weighting 
function design procedure similar to that discussed in the previous section. 
As a result, we incur no penalty for choosing the frequency-truncation func
tion extremely wide. Figure 12.5(e) illustrates the Fourier transform pair 
obtained by truncating the sampled frequency response. 

To complete the description of the digital filter, it is necessary to sample 
with the time-domain sampling function shown in Fig. 12.5(f). Note that the 
sampling period T has already been set because NT must equal To. The 
resulting sampled functions shown in Fig. 12.5(g) represent the digital filter 
as designed from a frequency-domain specification. If we ensure that time
domain aliasing and frequency-domain truncation effects are insignificant, 
then the digital filter of Fig. 12.5(g) is essentially equivalent to that discussed 
in Sec. 12.1; we simply proceed from this point using the design techniques 
described in the previous section. 

The design of FFT digital filters from a frequency-domain specification 
appears to be a straightforward extension of time-domain design techniques. 
This is in fact the case if we exercise caution with respect to two pertinent 
assumptions: frequency-domain truncation and time-domain aliasing. We 
will now explore further the implication of time-domain aliasing in FFT 
frequency-domain filter design. 

Time-Domain Aliasing and End Effects 

To demonstrate the potential problem of time-domain aliasing, we show 
in Fig. 12.6(a) a filter frequency-response characteristic that digital filter 
designers often try to obtain. Following the design procedures for frequency
domain design of digital filters that were described in Fig. 12.5, we first 
sample in the frequency domain using the sampling function illustrated in 
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Figure 12.6 Graphical development of an apparently perfect rectangular filter. 

Fig. 12.6(b). We purposely have chosen a large frequency sample interval 
so that there is significant time-domain aliasing, as shown in Fig. 12.6(c). 
Recall that the interval liTo is the variable that the FFT filter designer uses 
to limit time-domain aliasing to an acceptable level. 

The filter frequency-response function is of finite duration and, as a 
result, multiplication by a frequency-truncation or weighting function of 
greater duration, as shown in Fig. 12.6(d), introduces no distortion but does 
set the truncation width NT. Time-domain sampling with N samples over 
the time-function period To is achieved by multiplication with the time-sam-
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pIing function illustrated in Fig. 12.6(0. The resulting time- and frequency
domain sampled approximations to the desired time- and frequency-domain 
filter characteristics are shown in Fig. 12.6(g). 

Based on the illustrations of Fig. 12.6, one could conclude that a filter 
has been designed that has a perfectly square frequency response. This, 
however, is not the case as this design cannot be implemented by FFT 
convolution techniques. Recall that in order to apply FFT convolution tech
niques without end effects (Sec. 10.1), it is necessary that the number of 
nonzero samples defining the digital filter impulse-response function be less 
than the total number of samples to be FFTed. As a result, zeros must be 
added to the N points of the first period of get), Fig. 12.6(g). The impulse 
response with appended zeros then defines the frequency-function charac
teristics of the designed filter. 

To illustrate this addition of zeros, we repeat the time and frequency 
functions of Fig. 12.6(g) in Figs. 12.7(a) and (d), respectively. Assume that 
the number of data points to be processed by the FFT is 2N; the N points 
defining the digital filter of Fig. 12.6(a) must therefore be combined with N 
zeros to form a periodic function of period 2NT. To determine the time
domain result of adding these zeros, we multiply by the periodic square
wave function illustrated by Fig. 12.7(b); the corresponding time function 
is shown in Fig. 12.7(c). Multiplication of the functions of Figs. 12.7(a) and 
(b) yields the results illustrated in Fig. 12.7(c), a periodic function with 2N 
points per period. The frequency function corresponding to Fig. 12.7(c) is 
obtained by convolution of Figs. 12.7(d) and (e). This function is illustrated 
in Fig. 12.7(0; the function no longer closely approximates the desired fre
quency-domain response function. 

As shown, the addition of zeros results in rippling in the digital filter 
frequency response. To reduce this effect, it is necessary to substitute a 
suitably shaped time-domain weighting function for the rectangular function 
used in Fig. 12.7(b). 

Example 12.2 Notch Filter Design 

As an illustration of FFT frequency-domain digital filter design, consider the fre
quency function illustrated in Fig. 12.8(a). As shown, the desired filter function has 
notch filter characteristics between 1.5 and 2.5 Hz and a cutoff frequency of 5 Hz. 
We wish to design a digital filter approximation to the illustrated filter function. 

Assume that the data to be filtered has no frequency component above 10 Hz. 
Hence, our time-domain sample interval T should be less than 0.05 s. For N = 1024, 
choose T = 0.0391 s and thus ilf = 0.25 Hz. When sampling the frequency function 
illustrated in Fig. 12.8(a), recall that the computation of the inverse FFT requires 
that we must fold the real frequency function about n = N12. We assume the phase 
function is zero and hence the imaginary frequency function is zero. Note that be
cause the phase function is zero, then the frequency function is even and hence the 
impUlse-response function is even (noncausal). 

The inverse FFT (scaled by T) is shown in Fig. 12.8(b). This impUlse-response 
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Figure 12.7 Graphical development illustrating the effect on filter amplitude re
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function is also symmetric about n = N12, but we show only values for positive 
time. Following our design procedure, we apply a Hanning truncation or weighting 
function to the impUlse-response function shown in Fig. 12.8(b). The weighting func
tion is positioned to have unity value at time t = 0, zero value at time t = Te. and 
to be symmetric about n = N12. We compute the FFT of the weighted impulse 
response to determine the frequency response of the designed filter. The log am
plitude response of the FFT designed digital filter is illustrated in Fig. 12.8(c) for T, 
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= 1,2.5, and 10 s. As shown, severe truncation (Tc = 1 s) results in a filter whose 
characteristics are not useful. 

We use FFT convolution techniques to implement the designed filter. For T 
= 0.0391 s, a 1024-point FFT can process 40.04 s of data. The filter impulse response 
for Tc = 2.5 s has a duration of 5 s because we must include the negative time values 
(mirror image) if a zero-phase filter is desired. If this filter is acceptable to the de
signer, it can process data rather efficiently. A 20-s duration impulse response (Tc 
= 10 s) gives excellent attenuation characteristics but is less efficient. However, we 
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Figure 12.9 Illustrations showing correct formatting of time and frequency func
tions for the digital filter design of Fig. 12.8. 
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argue again that the designer should predetermine if design simplicity or data-pro
cessing time is of first priority. 

For clarity of presentation, Figs. 12.9(a) to (d) illustrate the appropriate fre
quency function to be sampled, the FFT computed impulse response, the Hanning 
weighting function, and the zero-phase-shift filter impulse response, respectively. 
The impulse response of Fig. 12.9(d) is that which must be convolved with the data 
by means of the FFT if a zero-phase-shift filter is desired. 

Summary 

In this chapter, we have explored the basic concepts of nonrecursive 
FFT digital filter design. The advantages of the proposed design procedure 
are design efficiency and implementation simplicity. A disadvantage is that 
a large number of sample values may be required to adequately represent 
the filter impulse-response function. Implementation of a digital recursive 
filter can often give an order-of-magnitude speed advantage over an FFT 
convolution implementation of a digital filter [I]. If the filter to be used is 
of a conventional shape and vast quantities of data are to be processed, then 
certainly the time spent designing a digital recursive filter is worthwhile. 
But if the design is for an experimental effort or if the filter function is of 
unusual shape, then the FFT design procedure presented here is a simple 
and cost-effective approach. 

Alternate truncation or weighting functions can be employed to alter 
the side-lobe characteristics of FFT filter designs. Recall from Sec. 9.2 that 
the side-lobe level can be specified for the Dolph-Chebyshev weighting func
tion. Using the previously described design approach, Helmns [2] has applied 
the Dolph-Chebyshev weighting function to FFT digital filter design prob
lems and has achieved a specified side-lobe level. 

PROBLEMS 

12.1 Analytically determine the Fourier transform and plot the amplitude and phase 
spectrums of the waveform h(t) = a2te -at, where a = 2 and t > O. 

12.2 If the aliasing level that one is willing to accept has been set at x dB, then why 
does one select the crossover frequency to be that where the frequency function 
is down (x + 3) dB? 

12.3 If the waveform of Prob. 12.1 is sampled at 
(a) 250 
(b) 500 
(c) 1000 
(d) 1500 
samples per second, what is the aliasing level in dB? 

12.4 When the Hanning weighting function is applied to the impulse-response func
tion illustrated in Figure 12.l(a), should the weighting function have its max-
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imum amplitude centered on the origin or at the midpoint of the interval [0, W H]? 
Explain. 

12.5 Design a digital filter to be implemented using FFT convolution that approx
imates the following time-domain specified filters: 
(a) h(t) = e- I 

(b) h(t) = e -I COS(21Tt) 
(c) h(t) = [sin2(t)]lt 2 

12.6 The FFT time-domain specification technique for digital filter design is of con
siderable importance in those cases where designs for digital recursive filters 
do not exist. Give examples. 

12.7 Refer to the impulse-response function of Fig. 12.5(g). Explain the result if the 
N sample values shown are used to implement a digital filter. 

12.8 Refer to Fig. 12.6. Why can't the problems cited be resolved by selecting the 
frequency-sampling interval in Fig. 12.6(b) much smaller than that shown? 

12.9 Design a digital filter to be implemented using FFf convolution that approx
imates the following frequency-domain specified filters: 

1 
(a) H(f) = 1 + (21Tf)2 

p 
(b) H(f) = f4 + 1 

(c) H(f) = Sin(21Tf~:;S(21Tf) 

Aliasing should be below - 50 dB. 
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13 

FFT MULTICHANNEL 

BAND-PASS FILTERING 

In radar, sonar, communications, and signal processing systems, the appli
cation of the FFT to digital multichannel band-pass filtering is of major 
importance. These fields of FFT applications are based on the interpretation 
of each FFT resolution cell as the output of a band-pass filter. In this chapter, 
we develop graphically and analytically the fundamentals of FFT digital 
band-pass filtering. 

We first explore the analogy of the FFT to a bank of integrate and 
sample filters. Both graphical and mathematical presentations are devel
oped. We then review the data-weighting function discussed in Sec. 9.2 from 
a filter-shaping perspective. The relationship of FFT resolution to band-pass 
filter response characteristics is explored in detail. 

The FFT filtering development is then extended to the interpretation 
of a sequence of FFT outputs as sequential time samples from a bank of 
band-pass filters. Interpreting FFT outputs as time samples is a concept that 
is contrary to one's intuition. One normally considers the FFT as a time
to-frequency transform. For these reasons, basic implementation consid
erations that one employs for FFT multichannel filtering are explored in 
detail. Numerous examples are presented to solidify the development. 

13.1 FFT BAND·PASS INTEGRATE AND SAMPLE FILTERS 

An interpretation of the FFT that has been found useful is its realization as 
a bank of band-pass integrate and sample filters. Such an interpretation 
requires we show the FFT can be viewed as a time-domain convolution 
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operation. This follows because a filter is a linear system and the output of 
a linear system is the convolution of the input to the system and the system 
impulse response (Ex. 4.4). Hence, to show that the FFT can be interpreted 
as a bank of filters, we must show that the FFT operation is a convolution 
operation involving a set of impulse-response functions whose Fourier trans
form (i.e., transfer or system frequency-response functions) are those of a 
band-pass filter bank. In this section, we develop both analytically and graph
ically this interpretation of the FFT. 

Development of Band-Pass Filter Equations 

To develop the analytical relationships describing the FFT as a bank 
of band-pass integrate and sample filters, consider the discrete Fourier trans
form approximation to the continuous Fourier transform: 

N-1 

Y(nINT) = T ~ y(kT)e -j271'nklN 

k~O 

n = 0, I, . . . , N 12 (13.1) 

Recall that Eq. (13.1) is simply the rectangular integration approximation to 
the finite-interval continuous Fourier transform integral. Hence, if T is suf
ficiently small, then Eq. (13.1) can be written with small error as 

(NT 
Y(nfo) = Jo y(t)e -j271'nfot dt 

= foNT y(t) cos(27rnfot) dt - j foNT y(t) sin(27rnfot) dt 

n = 0, I, ... , NI2 

(13.2) 

where fo = liNT. Although Eq. (13.2) is a continuous Fourier transform 
integral, we are only evaluating the equation for the (NI2) + 1 discrete 
frequencies evaluated in Eq. (13.1), that is, 0, fo, 2fo, ... , (NI2)fo. (Ob
serve that Eq. (13.2) holds also for negative frequencies, but this generali
zation is omitted for clarity.) From Eq. (13.2), we will proceed to demon
strate the implied convolution operation of the FFT. To do so, we have 
purposely converted from the discrete (Eq. (13.1) to the continuous domain 
(Eq. (13.2». Although it is not necessary to prove our arguments in the 
continuous domain, we find that such an approach is generally more easily 
visualized. 

Our approach to the development of the FFT band-pass integrate and 
sample filter concept is to first consider only the real term of Eq. (13.2) 
(assume y(t) is a real function): 

(NT 
YR(nfo) = Jo y(t) cos(27rnfot) dt n = 0, I, ... , N/2 (13.3) 

We will show that Eq. (13.3) can be interpreted as a time-sampled output 
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from a bank of filters with impulse-response functions u(t) cos(27Tnfot), 
where u(t) is unity over the interval (O,NT). To facilitate the development, 
we first consider the low-pass FFT filter of the filter bank. 

Low-Pass Filter Development 

Consider Eq. (13.3) for the case n = 0: 

(NT 
Y R(O) = Jo y(t) dt (13.4) 

For this case, Eq. (13.3) reduces to a simple integration of y(t) over the 
interval of 0 to NT. We claim that Eq. (13.4), that is, the FFT output for n 
= 0, is the linear-system convolution equation representing a low-pass filter 
followed by a sampler. To develop this viewpoint, consider the following 
arguments. 

In Fig. 13.1, we show the procedure for convolving the two waveforms 
y(t) and u(t): 

(13.5) 

If we let y(t) represent the input waveform to a linear system and let 
u(t) be the impulse response of the system, then Eq. (13.5) determines the 
system output ro(t). In Fig. 13.1, we have assumed that the system impulse 
response u(t) is a unity amplitude function over the interval 0 to NT, as 
shown in Fig. 13.1(a). The system input y(t) is assumed to be a general 
waveform, as shown in Fig. 13.1(b). Although Eq. (13.5) describes the linear
system output for all time t, we show the graphical evaluation of Eq. (13.5) 
for the single point of time t = t' = NT. 

Now observe that the evaluation of the convolution relationship of Eq. 
(13.5) for the point in time t' requires only the integration of y(t) over the 
interval 0 to NT, as illustrated in Figs. 13.1(e) and (t). Also note from Fig. 
13. I(e) that multiplication by u(t) required in the convolution procedure of 
Eq. (13.5) actually determines the integration interval because u(t) is defined 
to have utility amplitude over the interval 0 to NT and to have zero amplitude 
elsewhere. Hence, the evaluation of the convolution equation for the point 
of time t = t', as shown in Fig. 13.1(t), reduces to integration of y(t) over 
the interval 0 to NT. But this result is exactly Eq. (13.4), the FFT output 
for the case n = O. We have then shown that Eq. (13.4) can be interpreted 
as the evaluation of a convolution equation for a single point of time. This 
operation is called integrate and sample filtering. 

Because Eq. (13.5) describes the output of a linear system with input 
y(t) and impulse response u(t), the real FFT output at n = 0 can be char
acterized as the output of a linear system sampled at time t = t' = NT. The 
system-response characteristics are defined by the impulse response u(t), 
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Figure 13.1 Graphical development of the equivalence of the FFT and convo
lution for the case n = O. 

which is illustrated in Fig. 13.2(a). Magnitude of the Fourier transform of 
this impulse response is shown in Fig. 13.2(b). This frequency function is 
that of a low-pass filter with a magnitude frequency-response function of 
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Nl1sin(7rf/fo)]/(7rf/fo). As a result, the real FFT output for the case n = 0, 
as described by Eq. (13.4), is equivalent to the output of a low-pass integrate 
and sample filter with a Nl1sin(7rf/fo)]/(7rf/fo) frequency response. Since 
Eq. (13.4) evaluates the convolution integral for only one point of time, we 
interpret the FFT for n = 0 as a low-pass filter followed by a sampler. 

Note that we have shown that the FFT output can be considered as a 
sampled value of a time function. This is in direct contrast to the normal 
interpretation ofthe FFT as a time-to-frequency-domain transform. We now 
extend these low-pass filter results to the band-pass filter case. 

Band-Pass Filter Development 

Let us now consider Eq. (13.3) for the case n = 1: 

YR(fo) = foNT y(t) cos(27rfot) dt (13.6) 

Our objective is to demonstrate that Eq. (13.6) represents the output of a 
band-pass filter centered at frequency f 0 followed by a sampler. Our ap
proach follows that used for the low-pass filter development. 

In Fig. 13.3, we show the basic waveforms obtained in realizing the 
convolution equation 

(13.7) 

where 

u'(t) = u(t) cos(27rfot) (13.8) 

As in the low-pass filter case, Eq. (13.7) characterizes the output of a linear 
system with input y(t) and impulse response u'(t) defined by Eq. (13.8). 
Figure 13.3 graphically evaluates Eq. (13.7) for the single point of time t = 
t' = NT. As shown in Figs. 13.3(e) and (t), this single point of the convolution 
result is determined by multiplying y(t) by cos(27rfot) and integrating over 
the interval 0 to NT. This sample value of the convolution result is exactly 
the FFT output for n = 1 computed from Eq. (13.6). Hence, Eq. (13.6) can 
be interpreted as the evaluation of the convolution equation (13.7) for the 

ultl 

NT 10 210 310 

lal (bl 

Figure 13.2 FFT low-pass filter: time- and frequency-domain characteristics. 
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Figure 13.3 Graphical development of the equivalence of the real FFT and con
volution for the case n = 1. 

single point of time t = t' = NT, and, as a result, the real FFT output for 
n = 1 is that of a sampled output from a filter with the impulse-response 
function given by Eq. (13.8). 

In Fig. 13.4(a), we show the impulse response of Eq. (13.8). Note that 
this impulse response is simply the multiplication of the low-pass filter im
pulse response u(t) and the term cos(27rfot). To determine the corresponding 
frequency-response function, recall from the frequency-shifting theorem 
(Eq. (3.23) and Ex. 3.8) that multiplication of the low-pass impulse response 
u(t) by the cos(27rf ot) term translates the low-pass filter frequency-response 
function illustrated in Fig. 13.2(b) into a band-pass frequency-response func
tion centered at frequency fo, as shown in Fig. 13.4(b). The band-pass filter 
frequency characteristic is the Nllsin(7rf/fo)]/(7rf/fo) function of the low
pass filter shifted in frequency. 

The FFT real output for the case n = 1 (Eq. (13.6» can then be in
terpreted as a single sample of the output of a band-pass filter centered at 
frequency fo with NT{sin[7r(f - fo)/fo]}/[7r(f - fo)/fo] frequency-response 
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Figure 13.4 FFT band-pass filter centered at frequency fo = liNT: time- and 
frequency-domain characteristics. 

characteristics (magnitude). As in the low-pass filter case, the output of the 
FFT can be considered as a single value of a time waveform. 

If we consider Eq. (13.3) for the general case, we note that the previous 
arguments apply. For each n, we can draw an illustration analogous to Fig. 
13.3. Hence. the FFT real output YR(nfo,NT) can be interpreted as the 
output of a convolution integral: 

Y R(nfo,NT) = foNT y(t) cos(27rnfot) dt 

= f:"" Y(T)u~(NT - T) dT 

n = 0, I, ... , N/2 

(13.9) 

where the convolution integral must be interpreted as being evaluated only 
at t = NT and where u~(t) is the system impulse response given by 

u~(t) = u(t) cos(27rnfot) (13.10) 

The superscript i in u~(t) indicates that the filter response is in phase and 
is determined by multiplication of the impulse response u(t) by a cosine 
term. 

From the frequency-shifting theorem (Ex. 3.8), multiplication of the 
low-pass filter impulse response u(t) by the function cos(27rnfot) translates 
the NT[sin(7rf/fo)]/(7rf/fo) low-pass filterfrequency response to a band-pass 
filter centered at frequency nfo. As a result, Eq. (13.3) can be interpreted 
as the band-pass filter bank illustrated in Fig. 13.5, where it is 
understood that we sample the outputs of the filter bank at time t = NT. 
All side-lobe characteristics of the NT{sin[7r(f - nfo)/fo]}/[7r(f - nfo)/fo] 
filters in Fig. 13.5 have been omitted for clarity. The frequency response of 
each filter is centered at frequency nfo, where n = 0, I, ... , N/2. Note 
that we can easily extend our arguments to include nfo, where n = NI2 + 
I, ... , N - I, to determine the filter response for negative frequencies. 
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U'(fl 

Figure 13.5 FFT band-pass filter bank frequency-domain characteristics (side lobes deleted). 

Quadrature Band-Pass Filter Bank 

We have neglected the imaginary term in Eq. (13.2). If we treat this 
term in the same manner as the real term, then we obtain another band-pass 
filter bank described by 

foNT yet) sin(2'iTnfot) dt 

J:~ y(t)uq(NT - T) dT 

n = 0, 1, ... , N/2 

(13.11) 

where the convolution integral is evaluated only at t = NT and where uq(t) 
is the system impulse response given by 

uq(t) = u(t) sin(2'iTnfot) n = 0, 1, ... , N/2 (13.12) 

Superscript q in uq(t) indicates that the impulse response is in quadrature 
and is determined by multiplication of the impulse response u(t) by a sine 
term. The negative sign in Eq. (13.11) is absorbed by the folding operation 
in the convolution process (see Prob. 13.2). A comparison of Eqs. (13.12) 
and (13.10) reveals that the two impulse-response functions differ only by 
a phase shift, that is, the difference between sin(2'iTnfot) and cos(2'iTnfot). 
Hence, we use the defining terms in phase and quadrature. We can then 
repeat the arguments leading to Fig. 13.3 with the exception that the impulse
response function is now a sine function instead of a cosine function. Com
pletion of this development results in another band-pass filter bank that 
differs only in phase-response characteristics from those of the previous 
development. Equation (13.11) can be interpreted as the time-sampled output 
of a filter bank with impulse response that is in quadrature or 90° out of 
phase with the filter bank described by Eq. (13.9). 

Summary 

Based on the previous discussions, FFT results can be interpreted as 
the time-sampled outputs of two band-pass filter banks from which phase 
and amplitude information can be derived. Summarizing, the real and im-
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aginary FFT terms from Eqs. (13.9) and (13.11) can be expressed as 

YR(nfo,NT) = foNT y(t) cos(27Tnfot) dt 

= J:,., y(T)u(NT - T) cos[27Tnfo(NT - T)] dT 

Y[(nfo,NT) = - foNT y(t) sin(27Tnfot) dt 

= J:= Y(T)u(NT - T) sin[27Tnfo(NT - T)] dT 

n = 0, 1, ... , N/2 

Hence, the FFT relationship of Eq. (13.2) can be written as 

(NT 
= Jo y(t) cos(27Tnfot) dt -

(NT 
j Jo y(t) sin(27Tnfot) dt 

(NT 
= Jo y(t)e -j2-rrnfol dt 

= J:", y(T)u(NT - T)e j 2-rrn fo(NT - T) dT 

n = 0, 1, ... , NI2 

where the convolution integral is evaluated only at t = NT. 

(13.13) 

(13.14) 

(13.15) 

The filter bank described by the real part of Eq. (13.15) is generally 
termed the in-phase filter bank and the filter bank described by the imaginary 
part of Eq. (13.15) is termed the quadrature filter bank. Sampled real and 
quadrature band-pass filter bank outputs are an alternate way of interpreting 
the conventional real and imaginary outputs of the FFT. 

13.2 FFT BAND·PASS FILTER FREQUENCY·RESPONSE 
CHARACTERISTICS 

Within the context of interpreting the FFT as a bank of filters, it is of value 
to reexamine some of the terminology associated with the FFT. In particular, 
we wish to investigate the frequency-response characteristics of FFT filters 
and reinvestigate FFT resolution and data-weighting functions. 
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FFT Filter Bank Frequency-Response Characteristics 

From Fig. 13.5, we note that there is considerable overlap of the fre
quency-response functions of adjacent filters in the FFT filter bank. As a 
result, a single sinusoid input to the FFT filter bank can produce an output 
at several adjacent filters. To examine this effect further, consider the FFT 
results shown in Fig. 13.6. The input sinusoid to the FFT is a cosine wave
form of frequency 6.5/32 Hz. For N = 32 and T = 1, the filter frequency 
responses of the FFT filter bank are centered at integer multiples of the 
frequency fo = 1/NT = 1/32. Hence, the frequency of the input sinusoidal 
is exactly between the center frequencies of the two band-pass filters cen
tered at 6/32 and 7/32 Hz. 

As shown, the FFT responds to the input sinusoid with maximum out
put at the two adjacent filters. The output magnitude is 0.637 of the input. 
All other filters of the FFT filter bank also respond to the input sinusoid 
because of the side-lobe frequency response or side-lobe leakage of the filter 
bank. The output value for each FFT filter in the filter bank is determined 
by the magnitude of the filter main lobe or side lobe at the frequency of the 
input sinusoid. 

We know from Sec. 9.2 that we can reduce side-lobe leakage by use 
of data-weighting functions. This concept is reexamined in this section in 
view of interpreting the FFT as a band-pass filter bank. 

FFT Resolution 

In Chapter 9, we addressed FFT resolution. The interpretation of the 
FFT as a bank of integrate and sample filters further illustrates the concept 
of FFT resolution. Recall from previous developments that the frequency 
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Figure 13.6 Graphical development of side-lobe leakage encountered with an 
FFT band-pass filter bank. 
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responses of the filters in the FFT integrate and sample filter bank are cen
tered at integer multiples of the frequency fo, as illustrated in Fig. 13.7(a). 
Thus, adjacent frequency responses of filters are separated by 11 NT, the 
resolution of the FFT. Note from Fig. 13.7(a) that crossover points of ad
jacent frequency responses are also separated by the resolution term 11 NT. 
These crossover points are at the - 4 dB values on the filter frequency
response characteristics. This crossover value contrasts to the normally en
countered - 3 dB crossover definition for a filter bank. 

Resolution of a filter is defined as the capability of a filter bank to 
distinguish between frequencies. Sinusoids of frequencies contained within 
the bandwidth of any filter of the band-pass filter bank can not be distin
guished at the output of that filter. Hence, the term resolution is used. When 
a rectangular data-weighting function is used, the convention is to define 
the bandwidth of each filter as f 0 = 11 NT. 

To illustrate the filter bank concept of FFT resolution improvement, 
consider Fig. 13.7. Because NT is the duration of the time function that is 
being FFTed, then FFf resolution improvement, that is, a decrease in the 
bandwidth of each FFf filter, can be achieved by increasing the number of 

10 210 310 410 
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Figure 13.7 FFT band-pass filter bank for (a) N samples and for (b) 2N samples. 
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data points N (for a given T). In Fig. 13.7(a), we show the FFT band-pass 
filters with resolution io = liNT. Figure 13.7(b) illustrates the improved 
resolution obtained by doubling NT. If we increase the time duration of the 
data record being FFTed to 2NT, then the FFT resolution becomes io 
= 1I2NT, as illustrated in Fig. 13.7(b). As shown, the filter bandwidths 
decrease by a factor of two. 

FFT Data-Weighting Function: A Filtering Viewpoint 

As developed in this chapter, the FFT can be considered as a bank of 
integrate and sample band-pass filters with poor side-lobe characteristics. 
However, from Sec. 9.2, we know that it is possible to improve side-lobe 
characteristics by using data-weighting functions. This concept is further 
clarified by noting in Sec. 13.1 that we show the FFT can be characterized 
as the output of a linear system with impulse-response function u'(t). If we 
shape this impulse-response function, we can improve the band-pass filter 
characteristics. 

To modify the impulse-response function of the filter bank, we proceed 
as in Sec. 9.2 and multiply the data by a weighting function. Equation (13.15) 
becomes 

(NT 
Y(nio,NT) = Jo [w(t)y(t)]e-j21Tnfot dt 

= L NT y(t)[ w(t)e - j 21Tnfo t] dt (13.16) 

n = 0, 1, ... , NI2 

where wet) is the data-weighting function. Note in Eq. (13.16) that multi
plication of the data by a weighting or window function is equivalent to 
multiplication of the impulse-response function u(t)e -j21Tnfot by the weight
ing function wet). 

Analogous to the development in Sec. 13.1, we can show that the fre
quency-response characteristics of each filter in the FFT filter bank are 
determined by the Fourier transform of the weighting function. In Fig. 13 .8, 
we show the FFT band-pass filter bank obtained by using the Hanning 
weighting function. The band-pass filter bank obtained by using the con
ventional rectangular weighting function is also shown for comparison. Note 
that the filters in the Hanning filter bank have a bandwidth greater than those 
of the filter banks obtained with rectangular weighting. However, we accept 
this loss of resolution (increased bandwidth) in order to achieve the improved 
side-lobe performance (see Fig. 9.8(b». As discussed in Sec. 9.2, the utili
zation of weighting functions becomes a trade-off between resolution and 
side-lobe characteristics. Note that the conventional definition of FFT res-



Sec. 13.3 Multichannel Band-Pass Filtering by Shifted FFTs 

1.0 

~ 0.8 
:J 

5 0.6 
0-

~ 0.4 

0.1 

10 210 

- - - RECTANGULAR WEIGHTING 

_ HANNING WEIGHTING 

,--..... ,-- --
310 410 510 610 710 

Figure 13.8 Comparison of the FFT band-pass filter bank frequency-response 
characteristics for rectangular and Hanning weighting functions. 

303 

olution (f 0 = 11 NT) implies a different bandwidth when weighting functions 
are used. 

Summary 

The results of this section do not differ from those of Sec. 9.2. Only 
the interpretation viewpoint has changed in that we have reexamined some 
of the basic concepts of the FFT in terms of linear filters. If one's formal 
education includes linear-system theory, this section should lend additional 
insight to some of the basic concepts of the FFT. 

13.3 MULTICHANNEL BAND-PASS FILTERING 
BY SHIFTED FFTs 

In Sec. 13.1, we developed the interpretation of the FFT as a bank of in
tegrate and sample filters. We now extend that discussion to a series of FFTs 
where each sequential FFT is hopped or shifted along the time function being 
transformed. This sequence of FFT outputs can be interpreted as time sam
ples from the outputs of a bank of band-pass filters. That is, we can use a 
sequence of FFTs to filter a time signal into time samples of individual 
channels with bandwidth equal to the resolution of the FFT. We will show 
that the FFT outputs are complex time samples of the outputs of a bank of 
quadrature filters. 

Because one normally considers the FFT as a time-to-frequency trans
form, the concept of realizing a sequence of FFT outputs as a filtered time 
sequence is often confusing. For this reason, we find it of value to investigate 
in detail this application of the FFT. In this section, we develop graphically 
and analytically the concept of FFT multichannel band-pass filtering. 
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Graphical Overview 

We show in Fig. 13.9 a pictorial of the FFT multichannel band-pass 
filtering concept. As illustrated in Fig. 13.9(a), multiple FFTs are performed 
sequentially on the time function y(t). Waveform y(t) of Fig. 13.9(b) is as
sumed to be a composite waveform, consisting of a constant-value waveform 
and a sinusoid offrequency 2io. Each of the FFTs shown in Fig. 13.9(a) is 
equivalent to a bank of integrate and sample band-pass filters, as shown in 
Fig. 13.9(t). The sequence of FFT outputs for the low-pass filter is shown 
in Fig. 13.9(c). FFT output complex samples for the filter centered at fre-
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Figure 13.9 Graphical representation of the output of a sequence of FFTs with multiple input 
signals. 
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quency 2fo are shown in Figs. 13.9(d) and (e). Each sequence of FFT outputs 
for a filter is the sampled output-time waveform for that respective filter. 

Figure 13.9(a) also illustrates the overlap of sequential FFTs. As 
shown, the hop or shiff for each FFT is one sample interval T of the input 
signal. Hence, the sampling rate of the output signal of each filter is liT. In 
later developments, we increase the FFT shift interval. 

Note from Fig. 13.9(c) that the output waveform of the real FFT low
pass filter is the constant term of the input signal. Further, the output wave
form of the real FFT band-pass filter centered at frequency 2f 0, as shown 
in Fig. 13.9(d), is the sinusoidal term of the input waveform. The output 
waveform of the quadrature, or imaginary, FFT band-pass filter centered at 
frequency 2fo, as shown in Fig. 13.9(e), is identical to the output of the real 
filter with the exception of a time delay (900 phase shift). Because the hop 
or shift interval of successive FFTs is T, then the sample interval for each 
FFT filter output is T. We now develop a theoretical basis to support the 
graphical results of Fig. 13.9. 

Theoretical Development 

In Fig. 13.9, we show a sampled time function y(t) that we wish to 
digitally band-pass filter using the FFT. The time domain over which each 
successive FFT is to be taken is also shown. If we assume a FFT weighting 
function w(t), then we can write the FFT approximation of Eq. (13.16) for 
the time interval 0 to NT as 

(NT 
Y(nfo,NT) = Jo y(f)w(f)e -j2-rrnfot df n = 0, 1, ... , NI2 (13.17) 

Recall that the parameter NT in Y(nfo,NT) is the end point of the time 
interval over which the first FFT is to be taken. We can write Eq. (13.17) 
equivalently as a convolution integral: 

(13.18) 

where f. = NT and we assume that Eq. (13.18) is evaluated only at f = f •. 
Recall that the convolution procedure requires that we fold W(f) about the 
y axis and then shift the folded function. A shift of f\ = NT is required in 
Eq. (13.18) to obtain the weighting function with position as illustrated in 
Fig. 13.9 for FFT-l. 

Now consider a second FFT over the interval 8 to 8 + NT, as shown 
by the placement for FFT-2 illustrated in Fig. 13.9. For this time interval, 
the FFT approximation is 

(5+NT 
Y(nfo,8 + NT) = J5 y(t)W(f - 8)e-j2-rrnfoU-5) df (13.19) 
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Analogous to Eq. (13.18), we can write Eq. (13.19) as a convolution integral: 

(13.20) 

where the convolution is evaluated only at t2 = 8 + NT. Note that if we 
fold w(-r) according to the rules of convolution, then the shift t2 = 8 + NT 
is required to obtain the placement illustrated in Fig. 13.9 for FFT-2. 

From Eqs. (13.18) and (13.20), the FFT approximation for any time 
interval can be written as 

YCnfo,t;) = J:oo Y(T)W(t; - T)eJ2-rrn fo(ti- T ) dT (13.21) 

where t; is the end point of the interval of duration NT over which the FFT 
is taken, as illustrated in Fig. 13.9. Note that Eq. (13.21) is simply the con
volution of y(t) with the function w(t)eJ2-rrn fo t , where we evaluate the con
volution at times t = t), t2, ... , t;, .... 

As discussed previously, the term w(t)eJ2-rrn fo t can be interpreted as 
the impulse response of a linear system that yields an in-phase and quad
rature band-pass filter bank. As a result, for each t;, Eq. (13.21) and the 
sequence of FFTs illustrated in Fig. 13.9 can be interpreted as the sampled 
output (at time t;) of a bank of analog band-pass filters. The interval 
t; - t;_) is the sample interval of the filter-bank outputs. 

Consider Eq. (13.21) for the case n = 0: 

Y(O,t;) = J:oo Y(T)W(t; - T) dT (13.22) 

We observe that Eq. (13.22) is the convolution of the waveform yet) with 
the impulse-response function w(t), that is, we have filtered yet) with a low
pass filter whose frequency-response characteristics are given by the Fourier 
transform of w(t). Further, Eq. (13.22) is valid only for the points in time t 
= t), t 2, t 3, • . . , which implies that we have sampled the output of the 
low-pass filter. Hence, the FFT output sequence Y(O,t), Y(Oh), Y(0,t3), 
... is actually a set of time-domain samples of the output of a low-pass 
filter with input y(t). 

Similarly, the FFT output sequence for the band-pass filter centered 
at frequency fo, that is, Y(fo,td, YCfoh), Y(fo,t3), ... , is the complex 
sampled time waveform of the output from a band-pass filter (center fre
quency fo). The real part of Y(fo,t), Y(foh), Y(fO,t3), ... is the sampled 
waveform out of the in-phase FFT filter bank and the imaginary part of 
Y(fo,t), Y(foh), Y(fO,t3), ... is the sampled waveform output ofthe quad
rature FFT filter bank. The imaginary part of Y(fo,t;) is shifted in phase 90° 
with respect to the real part of Y(fo,t;). Hence, a sequence of FFTs on the 
time function yet) yields results equivalent to a bank of quadrature digital 
band-pass filters. 
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Example 13.1 FFT Low-Pass Filtering 

To further illustrate the special case of FFT low-pass filtering, assume w(t) is the 
rectangular weighting function. From Eq. (13.22), 

(13.23) 

We show an example of FFT low-pass filtering according to Eq. (13.23) in Fig. 
13.10. For the graphical example shown, we have chosen the same input waveform 
assumed in Fig. 13.9: 

y(t) = 2 + cos(27rj't) f' = 21NT (13.24) 

Sample interval T has been set to NTl8. 
Figure 13.IO(a) illustrates the window placement of the first FFT described by 

Eq. (13.23): 

(NT 
Y(O,Nn = Jo y(t) dt (13.25) 

Substitution of Eq. (13.24) into Eq. (13.25) yields a value of 2NT because the cosine 
term integrates to zero. We graphically obtain the same result from Fig. 13.IO(a) by 
determining the area under the waveform over the interval 0 to NT. The output of 
the low-pass filter (i.e., the FFT) at the time NT is equal to 2NT, as shown in Fig. 
13.IO(d). Effectively. we have filtered the signal y(t) with a rectangle impulse-re
sponse low-pass filter and sampled the filtered waveform at time t I = NT, the first 
sample value shown in Fig. J3.IO(d). 

To obtain another sample of the low-pass filter output waveform, we shift the 
FFT window one sample interval, as shown by the weighting-function location FFT-
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Figure 13.10 Example of FFT low-pass filtering. 
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2 in Figs. 13.9 and 13.1O(b). For this case, Eq. (13.23) becomes 

19NTIS 

Y(0,9NTIS) = y(t) dt 
NTIS 

(13.26) 

Substitution of Eq. (13.24) into Eq. (13.26) yields a value of 2NT because the cosine 
term integrates to zero. From Fig. 13.1O(b), we obtain the same result by evaluating 
the area under the waveform over the interval NTIS to 9NTIS. This result is equivalent 
to the output of a low-pass filter (i.e., the FFT output) sampled at time 9NTIS, as 
shown in Fig. 13.1O(d). Figure 13.lO(c) further illustrates the shifting or hopping FFT 
and the interpretation of the FFT as the sampled output of the low-pass filter. Note 
that the sample interval of the low-pass filter output waveform is NTIS, the FFT 
shift interval. 

Recall that the frequency response of the FFT low-pass filter under the as
sumption of a rectangular window is a Nnsin(Trflfo)]/(Trflfo) function, which is zero 
at frequencies fo = liNT, 2INT, 3INT, ... (see Fig. 13.2). Hence, we would expect 
the FFT low-pass filter to completely eliminate an input sinusoid of frequency fo = 
2INT. This is the case illustrated in Fig. 13.10. 

Note that the zero-frequency input signal to the low-pass filter has an amplitude 
of 2 and the output amplitude is 2NT. The amplitude-scaling factor NT should be 
interpreted as the gain (multiplier) of the FFT filter bank. 

Example 13.2 FFT Band-Pass Filtering of a Sinusoid 

To graphically illustrate the concept of FFT band-pass filtering of a sinusoid, assume 
y(t) is given by 

y(t) = 2 + cos(2'ITf't) f' = 21NT (13.27) 

which is the identical waveform considered in Ex. 13.1. Here we evaluate the se
quence of FFT equations (13.20 for the case n = 2, that is, the band-pass filter with 
center frequency fo = 21NT is evaluated. 

Substitution of Eq. (13.27) into Eq. (13.20 for n = 2 yields 

Y(2fo,t;) = 1-00

00 [2 + cOS(2Trf'T)]W(t; - T)e j4'Tffo(I'-T) dT (13.2S) 

For simplicity, we let w(t) equal the rectangular function. Equation (13.2S) becomes 

Y(2fo,t;) = 2 (" [e j4'Tffoli]e -j4'TffOT dt 
J/i-NT 

(13.29) 

(13.30) 

= ej4'Tffo l, (Ii cos(2'ITf't)[cos(4Trfot) - j sin(4Trfot)] dt 
)t;-NT 

Since fo = liNT, the first integral of Eq. (13.29) is always over an integer number 
of periods and is zero. That is, the constant term in y(t) is removed from the output 
of the filter centered at frequency 2fo. Evaluation of Eq. (13.30) for t; = NT, the 
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first of the sequence of FFTs, yields 

(NT 
Y(2fo,NT) = eJ4-rrfO(ND Jo COS(41Tfot)[cos(41Tfot) - j sin(41Tfot)] dt 

(NT (NT 
= Jo cos2(41Tfot) dt - j Jo COS(41Tfot) sin(41Tfot) dt 

= foNT V2 dt + foNT V2 COS(81Tfot) dt (13.31) 

- j foNT [ V:z sin(O) + V2 sin(81Tfot)] dt 

= NTI2 

Computation of Eq. (13.31) is graphically illustrated in Fig. 13.1l(a). We show 
the window placement for the first FFT and the cosine impulse-response function 
of the FFT filter centered at frequency 2f o. The product of this cosine term and the 
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Figure 13.11 Example of FFf band-pass filtering of a sinusoid. 
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waveform y(t) is also shown. Integration of the product term yields the result of Eq. 
(13.31), which is shown in Fig. 13.11(d). The corresponding product involving the 
sine term is not shown because it integrates to zero. The output value NT/2 is the 
sample output of the FFT band-pass filter (center frequency 2fo) at time tl = NT. 

We evaluate the output of the same FFT band-pass filter at time ti = 9NT/S 
(FFT-2) in a later example (Ex. 13.3). To obtain the FFT output at time ti = 5NT/ 
4, which is FFT-3 in Figs. 13.9 and 13.11(b), we write Eq. (13.30) as 

15NTI4 
Y(2fo,5NT/2) = ej 2-rrfO(5NTI4) cos[21r(2fo)t] [cos(4'lTfot) 

NTI4 

- j sin(4'lTfot)] dt 

(13.32) 

15NTI4 

+ j cos(4'lTfot) sin(4'lTfot) dt 
NTI4 

-NT/2 

The graphical development of Eq. (13.32) is illustrated in Fig. 13. l1(b). As 
shown, the cosine impulse response of the filter centered at frequency 2fo now ranges 
over the interval NT/4 to 5NT/4. The integral of the product of this cosine term and 
the input waveform yields the - NT/2 result shown in Fig. 13.11(d). Again, we have 
not shown the quadrature sine term of the FFT filter because the output is zero. 

Evaluation of the FFT filter output at time t i = 3NT/2 is graphically illustrated 
in Fig. 13.11(c) and can be analytically determined analogous to Eq. (13.2S). The 
result is shown in Fig. 13.11(d). If we continue to evaluate Eq. (13.2S) for successive 
values of tj, the results depicted in Fig. 13.11(d) result. That is, successive outputs 
of the FFT band-pass filter centered at frequency 2fo are samples of the input 
sinusoidal waveform cos[2'lT(2fo)t]. The sample interval of the filter output is equal 
to the FFT shift interval NT/S. As expected, the constant term of the input signal 
is filtered by the FFT band-pass filter. 

Example 13.3 FFT Multichannel Filtering: Complex Samples 

Assume that y(t) is given as in the previous examples by 

y(t) = 2 + cos(21rf't) f' = 2/NT (13.33) 

In Ex. 13.2, we purposely chose the FFT shift interval to ensure that all imaginary 
FFT output samples are zero. In this example, we remove this restriction and address 
complex samples. 

From Ex. 13.2, we first evaluate Eq. (13.30) for the case n = 2 and ti = NT. 
We show in Fig. 13. 12(a) the evaluation of the real product term in Eq. (13.30). The 
integration of this product term yields the FFT real sample output at time ti = NT, 
as shown in Fig. 13.12(c). The imaginary product term of Eq. (13.30) for ti = NT 
is illustrated in Fig. 13.12(b). By inspection, this term integrates to zero and hence 
the FFT imaginary output sample is zero, as shown in Fig. 13. 12(d). 
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To evaluate Eq. (13.30) at time tj = 9NTI4 and l' = 2INT, we write 

19NT'4 
Y(2fo,9NTI4) = e/2Trfo(9NTI4) cos[2'IT(2fo)t] [cos(4'ITfot) 

NTI4 

- j sin(4'ITfot)] dt 

- j cos(4'ITfot) sin(4'ITfot) dt 19NT'4 ] 

NTI4 

[1 9NT'4 
= ej9Tr/2 Vz dt 

NTI4 

19NTl4 

+ Vz cos(8'ITfot) dt 
NTI4 

- j r9NTI4 cos(4'ITfot) sin(4'ITfot) dtJ 
JNTI4 

= ej9Tr/2 (NTl2) 

= jNTI2 

Chap. 13 

(13.34) 

Evaluation of the real term of Eq. (13.34) is graphically illustrated in Fig. 13.12(e). 
As shown in Fig. 13.12(c), the real product term integrates to zero for t2 = 9NT14. 
Graphical evaluation of the imaginary term is shown in Fig. 13.12(0. The imaginary 
product term integrates to NTI2, as shown in Fig. 13. 12(d). 

If we continue to evaluate the FFTs, Eq. (13.30) for subsequent values of ti, 
we obtain complex samples represented by the waveforms illustrated in Figs. 13.12(c) 
and (d). Note that the real and quadrature filter output sampled waveforms are iden
tical with the exception of a time delay or phase shift. 

Summary 

Recall from Chapter 9 that the FFT halves the amplitude of sinusoids 
between the positive and negative frequency outputs. As a result, if we repeat 
Examples 13.2 and 13.3 for the frequency - fo, we obtain identical results. 
Hence, if we add both positive and negative frequency results, we obtain a 
sinusoid with maximum amplitude NT, which is the amplitude (unity) of the 
input sinusoid multiplied by the FFT filter bank gain NT. The sample rate 
of the FFT filter outputs is equal to lI(FFT shift interval). 

We have shown that each FFT output is equivalent to a sample from 
a convolution operation of the input waveform and the impulse response of 
the respective FFT band-pass filter. The impulse response of each FFT filter 
is complex or in quadrature because the FFT weighting function (and hence 
the input signal) is mUltiplied by a cosine term to obtain the real output and 
multiplied by a sine term to obtain the imaginary output. Because the impulse 
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responses for each filter in the filter bank only differ by a 90° phase shift, 
then the output waveforms of the in-phase and quadrature filters are in quad
rature and only differ by a 90° phase shift. 

13.4 SAMPLE RATE CONSIDERATIONS IN FFT 
MULTICHANNEL FILTERING 

For clarity of presentation, we purposely oversampled the output of each 
FFT band-pass filter in the previous examples. Because we set the FFT shift 
or hop interval equal to the sample interval T of the input waveform, then 
each FFT band-pass filter output waveform is also sampled with interval T. 
However, a band-pass waveform can be sampled at a rate that is determined 
by the bandwidth of the waveform and not the maximum frequency com
ponent of the signal. The procedures used are termed down sampling and 
quadrature sampling. Both sampling techniques are described in detail in 
Secs. 14.1 and 14.2. 

We show in Sec. 14.1 that a bandpass signal with transmission band
width B T can be down sampled (with constraints) if the sampling frequency 
is 2: 2B T • However, we show in Sec. 14.2 that further sampling efficiencies 
can be obtained by representing the band-pass signal in complex or quad
rature form before sampling. A band-pass signal that has been translated or 
down sampled to zero center frequency in quadrature form (i.e., complex) 
can be sampled at a rate is 2: B T • Both down-sampling and quadrature
sampling techniques can be applied to band-pass waveforms if a band-pass 
filter is used to control aliasing. 

The aliasing level for each FFT band-pass filter is determined by the 
characteristics of the window or weighting function. In most practical ap
plications of FFT band-pass filtering, weighting-function selection is a trade
off compromise between the time duration of the filter and the desired filter 
performance in the passband (minimum ripple) and stop band (low side 
lobes). The weighting-function impulse response of a filter with low side 
lobes generally has a duration considerably longer than that of a rectangular 
weighting function with similar bandwidth (see Figs. 9.8(a) and (b)). A longer
duration weighting function increases the number of sample values N for 
each FFT and hence determines the practicality of FFT band-pass filtering. 
The normal procedure is to adopt a weighting function that provides rea
sonable band-pass filtering characteristics and then translate each FFT band
pass filter output to a baseband where a digital recursive filter is applied to 
improve the filtering characteristics. 

In Fig. 13. 13, we illustrate the correct procedure for defining the band
width of a FFT band-pass filter. We show the frequency-domain character
istics of an arbitrarily selected weighting function. The level of aliasing is 
determined by the filter side lobes. If an aliasing level considered to be 
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Figure 13.13 Graphical definition of the sampling bandwidth BT of a band-pass filter. 

acceptable is as illustrated, then the output waveform ofthis band-pass filter 
has a sampling bandwidth B T as shown. Bandwidth B T is also termed the 
transmission bandwidth and is used in applying the sampling techniques 
developed in Secs. 14.1 and 14.2 to the special case of FFT band-pass 
filtering. 

From Sec. 14.1 we know, that a band-pass waveform can be down 
sampled to its low-pass equivalent. If only the FFT real band-pass filter 
outputs are used, then Eq. (14.1) determines the appropriate sample rate. 
We can improve the sampling efficiency if we apply both down-sampling 
and quadrature-sampling techniques. Because FFT band-pass filtering re
sults in complex or quadrature sampled waveforms, we can down sample 
to zero center frequency both the real and imaginary outputs of each FFT 
band-pass filter and recover the original signal even though spectrum overlap 
(aliasing) occurs. The down-sampling frequency n must satisfy f; > B T , 

Eq. (14.5). Note that each FFT filter is centered at integer multiples of the 
frequency fo, where fo = liNT. Hence, from Sec. 14.1, translation to zero 
center frequency requires we set an integer multiple of the sampling fre
quency f; equal to the center frequency of each band-pass waveform that 
is to be down sampled. In most FFT band-pass filtering applications, the 
lowest frequency FFT filter used has a center frequency nf 0, where n is 
integer valued. We then set the sampling frequency n equal to an integer 
multiple of fo, that is, T' = NT/n. The sample interval T' for each FFT 
complex band-pass filter must satisfy the following relationships: 

T' $ IIBT 

T' = NT/n 

T' = pT 

n is integer valued 

p is integer valued 

(13.35) 

(13.36) 

(13.37) 

Note that Eq. (13.37) ensures that the output sample interval T' is selected 
as an integer multiple of T, the sample interval of the input waveform to the 
FFT. Sample interval T' is implemented by setting the FFT shift or hop 
interval to T'. 
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Quadrature sampling requires we reconstruct a real signal from the 
complex samples representing the aliased zero center frequency down-sam
pled spectrum. From Eq. (14.2), we multiply these complex time-domain 
samples by the exponential e -j27rf't, where f' is the center frequency of the 
desired baseband signal. The real part of the frequency-shifted complex 
waveform is the desired signal. Interpolation may be required to increase 
the sampling rate consistent with the bandwidth of the resulting baseband 
signal (see Sec. 14.2). 

13.5 FFT MULTICHANNEL DEMULTIPLEXING 

A practical application of the fundamentals developed in this chapter is the 
digital demultiplexing offrequency-multiplexed signals. We use the example 
multiplexed signal shown in Fig. 13. 14(a) to outline the principles of FFT 
band-pass filtering for multichannel signals. Each 4-kHz spectrum shown is 
assumed to be the result of single side-band modulation of a voice signal. 
Our objective is to FFT band-pass filter each channel of the multiplexed 
signal and reconstruct the signal so that the voice is audible. 

We choose our FFT parameters to center a band-pass filter at 2 kHz. 
Therefore, let 

f 0 = 11 NT = 2 kHz (13.38) 

and the corresponding FFT filter bank for a Hanning weighting function (see 
Fig. 9.8(b» is shown in Fig. 13. 14(b). As illustrated, this selection of fo 
results in a filter whose passband frequency response is broader than re
quired to filter the single side-band voice spectrum. However, if we let fo 
= 1 kHz, then the resulting band-pass filter severely attenuates the voice 
spectrum in each channel. Also note that we have redundant FFT band-pass 
filters. We use only those FFT outputs that are centered on the frequency 
of each channel of the multiplexed signal. The selected filters are shown by 
solid lines. 

Assume that the multiplexed signal has been filtered with a low-pass 
aliasing filter with a cutoff frequency of 20 kHz. The sample interval of the 
input waveform to the FFT must satisfy the Nyquist sampling criteria: 

(13.39) 

If we use a radix-2 FFT algorithm, the parameter N is chosen equal 
to an integer power of 2. Equations (13.38) and (13.39) are satisfied for the 
following selected parameters: 

fo = 2 kHz 

N = 32 (13.40) 

T = 1/(64 X 103 ) 
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Figure 13.14 (a) Example frequency-multiplexed signal spectrum, (b) FFT filter bank char
acteristics selected to demultiplex part (a), (c) frequency spectrum of a complex down-sampled 
FFT band-pass filter output, (d) low-pass filter frequency-response characteristics and the re
sulting filtered voice spectrum, and (e) the reconstructed voice spectrum. 

Assume that an acceptable aliasing level for each FFT band-pass filter 
is - 40 dB. From Fig. 9.8(b), the second side lobe of the Hanning function 
is down 41 dB. Hence, the sampling bandwidth BT of each band-pass filter 
output is 12 kHz, as shown in Fig. 13.14(b). Note that the main lobe and 
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first side lobe of the Hanning function passes through the signal in the ad
jacent channel. We eliminate this crosstalk with additional filtering to be 
discussed later. 

The FFT band-pass filter output sample interval T' must satisfy Eqs. 
(13.35) to (13.37): 

T' ::5 11(12 X 103) 

T' = 32T/n 

T' = pT 

n is integer valued 

p is integer valued 

(13.41) 

The equation set of Eq. (13.41) is satisfied for T' = 4T = 11(16 x 103 ). 

Each successive FFT is then shifted or hopped over four samples of the 
input waveform. This down sampling, or decimation, translates the output 
of each of the selected FFT band-pass filters to zero center frequency. 

The frequency spectrum of a complex down-sampled band-pass filter 
output is shown in Fig. 13.14(c). Note that the desired signal spectrum is 
overlapped and has a baseband bandwidth of 2 kHz. However, the Hanning 
band-pass filter characteristics allows frequency components from adjacent 
channels into the quadrature baseband spectrum. To remove this crosstalk, 
we apply a digital low-pass recursive filter to both the real and imaginary 
sample sequences. An assumed low-pass filter characteristic is shown in 
Fig. 13.14(d) as well as the filtered overlapped spectrum. 

To recover the voice waveform so that it is audible, we multiply the 
complex samples represented by the low-pass filtered spectrum of Fig. 
13.14(d) by the complex exponential e - j2-rrf' t, where f' = 2 kHz. The real 
part of the complex product is the desired voice waveform with spectrum, 
as shown in Fig. 13.14(e). Because the sampling rate of the down-sampled 
signal is 16 kHz, then interpolation is not necessary. 

In practical applications, channel selectivity is a key issue in the ap
plication of the FFT to demultiplexing. Weighting functions more sophis
ticated than the Hanning function are generally required. Further, our sim
plistic example is computationally very inefficient in that our choice of a 
base-2 FFT algorithm computed the output of all filters in the filter bank. 
Application of the FFT to the general problem of time-division and fre
quency-division (TDM and FDM) transmultiplexing is discussed in detail in 
Refs. [2] to [6]. Our analysis is also applicable to single-sideband frequency
division multiplex (SSB-FDM) modulation and demodulation. 

PROBLEMS 

13.1 Equations (13.6) to (13.8) and Fig. 13.3 develop the FFT band-pass filter ar
gument for the case n = 1 and real functions. Repeat this analytical and graph
ical development for n = 2 and n = 3 and only real terms. 
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13.2 Develop analytically and graphically the quadrature filter bank for the cases n 
= 0, 1, and 2. Show graphically why the negative sign in Eq. (13.11) does not 
appear in the convolution form of the equation. 

13.3 Develop the interpretation of the FFT as a bank of band-pass integrate and 
sample filters by proceeding along the lines in Sec. 13.1 but using only discrete 
arguments. Use the relationship 

N-I 

H(nlNn = L h(kT)e-j2-rrnkIN = h(O)eO + h(T)e-j2-rrnIN + ... + 
k=O 

which is equal to the discrete convolution of h(kn with the sequence 1, 
e -j2-rrnIN, •••• 

13.4 Repeat the graphical development of Fig. 13.6 for the case of an input cosine 
waveform offrequency 6.75/32 Hz. 

13.5 Repeatthe analytical developments of Eqs. (13.3) through (13.15) and the graph
ical developments of Figs. 13.1 through 13.5 for the case ofa Hanning weighting 
function. 

13.6 Repeat Ex. 13.3 for the waveform: 

y(t) = 1 + COS(27Tfot) fo = liNT 

13.7 Let 

y(t) = 1 + COS(27Tfot) + sin[27T(3fo)t] fo = liNT 

Develop the band-pass filtering equations and FFT output sample results for 
ti = NT. 

13.8 Let 

y(t) = COS(27TfIf) + sin(2'fTf2t) 

where fl = 3fo + fo/4 and f2 = 3fo - f o/4. For fo = liNT, use the FFT to 
band-pass filter y(t). 
(a) Discuss and graph the spectrum overlap that results from FFT band-pass 

filtering and down sampling. 
(b) Discuss and show graphically why complex sampling avoids loss of infor

mation due to spectrum overlap. 
(c) Show how to reconstruct the band-pass filter output signal at a center fre

quency of f o/2. 
13.9 Consider the multiplexed waveform: 

4 

y(t) = L COS[27T(fn + fn I4)] + sin[27T(fn - fn I4)] 
n=l 

Our objective is to use the FFT to demultiplex y(t). 
(a) Graphically sketch the spectrum of y(t). 

fn = n Hz 

(b) Determine all appropriate parameters for FFT band-pass filtering. Discuss 
your assumptions. 

(c) Analytically reconstruct each demultiplexed signal at a new center fre
quency of f 0/2. Explain how the frequency chosen for reconstruction affects 
the requirement for interpolation. 
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14 

FFT SIGNAL PROCESSING 

AND SYSTEM APPLICATIONS 

The computing features identified in the previous chapters have resulted in 
a multitude of signal-processing applications of the FFT. Many commercial 
and military systems utilize the FFT as an integral processing component. 
As the price and performance of special-purpose FFT hardware continues 
to improve, we can expect further growth in FFT signal-processing and 
system applications. Although it is impossible to enumerate every appli
cations area, the fundamentals of FFT signal-processing techniques are ap
plicable across a broad range of scientific pursuits. 

Because every application of the FFT is to sampled waveforms, the 
basics of signal sampling is of considerable importance to FFT users. For 
this reason, we first present the details of band-pass- and quadrature-sam
pling procedures. Then, a broad range of FFT signal-processing and system 
concepts is presented. An extensive introduction to each field of application 
is not possible; however, sufficient detail is presented to establish a basic 
foundation on which the reader can easily build. 

14.1 SAMPLING BAND-PASS SIGNALS 

The FFT is often used in digital signal-processing applications of band-pass 
signals. Efficient sampling of band-pass signals is of paramount importance 
when using the FFT. For this reason, we develop the band-pass sampling 
theorem, a special case of the Nyquist criteria for sampling baseband wave
forms, which was developed in Sec. 5.4. 

320 
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To illustrate the concept of sampling a band-pass signal, consider the 
time-domain waveform shown in Fig. 14.1. The waveform shown by the 
solid line in Fig. 14.1(a) is an amplitude-modulated band-pass signal. The 
dotted line represents the modulation, or information content, of the signal. 
Note that the modulation waveform is sampled at two times per period, but 
the carrier frequency is sampled only once per period. As shown, the samples 
completely characterize the modulation, or information, waveform even 
though the sample rate results in aliasing of the band-pass signal. The wave
form of Fig. 14.1(a) was sampled in synchronism with the peak of the carrier 
waveform for clarity of presentation. This is not a requirement for band
pass sampling, as illustrated in Fig. 14.1(b). Here we show the same sample 

hIt) ••• sampled values 

• 

(a) 

hIt) 
••• sampled values 

, 

(b) 

Figure 14.1 Example of bandpass signal sampling: (a) synchronous sampling with 
the peak of the carrier waveform, and (b) the general case. 
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rate as before but with a slight time delay. The dashed-line waveform rep
resented by the samples is the modulation signal. 

Band-pass waveforms are assumed to have a nonzero spectrum only 
over the frequency interval fl < If I < fh' where fh and fl are the highest 
and lowest frequencies that bracket the band-pass signal spectrum, respec
tively. The transmission bandwidth of a band-pass signal is defined as B T 

= fh - h Using Nyquist criteria, one would sample the band-pass signal 
at a rate of 2f h samples per second to ensure that overlap aliasing does not 
occur during sampling. However, recall from Sec. 5.3 that the sampling 
process produces spectrum images (aliasing) spaced at harmonics of the 
sampling frequency. We show that aliasing can be used advantageously when 
sampling band-pass signals and that a sampling rate less than 2f h can be 
determined (BT « fl) if we associate the band-pass signal with one of the 
aliasing images. The band-pass-sampling theorem states that a band-pass 
signal can be reproduced from sample values if the sampling frequency f s 

satisfies the relationship 

(14.1) 

and n is integer valued. The condition of Eq. (14.1) ensures that spectrum 
overlap does not occur and only yields acceptable sampling frequencies for 
f s < 2f h. Note that if we let n' equal the largest integer that does not exceed 
fhl(fh - fl), then the critical (lowest) sampling frequency for a band-pass 
signal is given by Eq. (14.1) as n = 2fhln'. Also observe that if we choose 
n = fhl(fh - fl), then Eq. (14.1) requires fs ~ 2(fh - fl) = 2B T • 

We illustrate the concept of efficient sampling of band-pass signals in 
Fig. 14.2 by means of the convolution theorem. A band-pass time-domain 
waveform and the corresponding band-pass-frequency spectrum are shown 
in Figs. 14.2(a) and (c), respectively. Note from Fig. 14.2(c) that the center 
frequency of the band-pass spectrum is 8fo and the transmission bandwidth 
B T is 2f o. Choose f s = 6f 0, which satisfies the constraints of the band-pass 
sampling theorem ofEq. (14.1) for n = 3. The time-domain sampling function 
is shown in Fig. 14.2(b) and the corresponding frequency-domain sampling 
function is shown in Fig. 14.2(d). 

Multiplication of the band-pass time-domain waveform of Fig. 14.2(a) 
and the sampling function of Fig. 14.2(b) results in the sampled waveform 
illustrated in Fig. 14.2(e). Recall from the convolution theorem that multi
plication in the time domain implies convolution in the frequency domain. 
Hence, the Fourier transform of the time-sampling function of Fig. 14.2(d) 
is convolved with the band-pass signal spectrum shown in Fig. 14.2(c). The 
result is the aliased frequency function illustrated in Fig. 14.2(t). 

Note from Fig. 14.2(t) that the sampled frequency function centered 
at frequency ± 2fo is identical to the original band-pass frequency function 
centered at frequency ± 8f o. Although the function centered at ± 2f 0 results 
from aliasing, we have not lost information due to spectrum overlap. The 
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Figure 14.2 Nonoverlapped aliased Fourier transform of a band-pass waveform 
that is sampled at less than twice the highest frequency component. 
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sampled frequency functions centered at ±4fo and ± 10fo in Fig. 14.2(0 are 
also the results of aliasing. These terms can be ignored because it can be 
shown that a low-pass fIlter with bandwidth 3fo reconstructs the original 
signal h(t) with only a shift of the center frequency from 8fo to 2fo. 

The highest frequency component of the band-pass waveform of Fig. 
14.2(a) is 9fo. Hence, application ofthe baseband Nyquist sampling theorem 
requires a sampling frequency of 18fo. Because we sampled at a rate of only 
6fo with no loss of information, the waveform is said to have been down 
sampled or decimated. We can down sample with no spectrum overlap as 
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long as the sampling frequency fs satisfies the band-pass sampling theorem 
of Eq. (14.1). 

Graphical Development of the Band-Pass Sampling 
Theorem 

We show in Fig. 14.3 a graphical development of the band-pass sam
pling theorem. In Fig. 14.3(a), the frequency function of an example band
pass signal is illustrated. Assume that the signal has center frequency 14fo 
and bandwidth BT < 2fo (i.e., the signal amplitude for frequencies fh and 
fl equals zero). The graphical frequency-convolution procedure is used in 
Figs. 14.3(b) through (I) to illustrate the effect of sampling a band-pass signal. 
We only show the frequency-sampling impulse functions and the convolved 
(aliased) frequency-domain functions. 

Because B T < 2f 0, then a natural choice for the sampling frequency 
is fs = 2BT = 4fo, as shown in Fig. 14.3(b). However, we note that this 
choice of fs produces spectrum overlap. Logically, one increases fs to elimi
nate spectrum overlap. In Fig. 14.3(c), we set fs = 4.25fo. Note that there 
is still some spectrum overlap, but if we increase fs to 4.33fo, as shown in 
Fig. 14.3(d), we achieve a nonoverlapped sampled frequency spectrum. But 
if we set fs = 4.5fo, as illustrated in Fig. 14.3(e), spectrum overlap is again 
encountered. Using the graphical convolution theorem, we can tediously 
determine the range of fs that will produce a nonoverlapped sampled spec
trum. This is the result given by Eq. (14.1). 

Consider Eq. (14.1) for the example band-pass spectrum illustrated in 
Fig. 14.3(a). We note that 2:5 n :5 7 because fh = 15fo and h = 13fo. Let 
n = 7. Then, from Eq. (14.1), we obtain 4.29fo :5 is :5 4.33fo. Observe 
from Figs. 14.3(c) and (e) that we obtained some spectrum overlap for sam
pling frequencies 4.25fo and 4.5fo. By a careful graphical analysis, we can 
obtain the range of acceptable sampling frequencies given by Eq. (14.1). The 
sampling frequency fs = 4.33fo illustrated in Fig. 14.3(d) lies at one end of 
this range and, as shown, spectrum overlap does not occur. 

Now let n = 6 in Eq. (14.1); we obtain a range of acceptable sampling 
frequencies given by 5fo:5 fs:5 5.2fo. A graphical illustration of the range 
of these sampling frequencies is illustrated in Figs. 14.3(1) through (g). For 
fs = 4.5fo, as shown in Fig. 14.3(e), we obtain an overlapped spectrum; 
but for fs = 5fo, as shown in Fig. 14.3(f), we note that the sampled spectrum 
is not overlapped. Unacceptable results are obtained for fs = 5.5fo, as 
shown in Fig. 14.3(g). As discussed previously, we can carefully adjust fs 
to graphically obtain the identical range given by Eq. (14.1) for n = 6. 

From the results illustrated in Figs. 14.3(h) and (i), we conclude that 
6fo :5 fs :5 6.5fo is an acceptable range for fs. Equation (14.1) yields this 
result for the choice n = 5. For n = 4, 3, and 2 in Eq. (14.1), we obtain the 
results 7.5fo :5 fs :5 8.67fo, IOfo :5 fs :5 13fo, and 15fo :5 fs :5 26fo, 
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Figure 14.3 Aliased Fourier transform of a band-pass waveform that is sampled 
at various frequencies. 

respectively. Figures 14.3(j) to (I) show acceptable choices of fs within each 
of these ranges. As before, we can refine our graphical analysis to produce 
the ranges defined by Eq. (14.1). 

Note that the low-pass spectrum results of Figs. 14.3(t), (j), and (I) are 
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spectrum inverted with respect to Fig. 14.3(a). These results correspond to 
the frequency ranges determined from Eq. (14.1) for n even. If n is chosen 
odd, then the sampled spectrum results are not inverted, as illustrated in 
Figs. 14.3(d), (h), (i), and (k). Also observe that if fs is an acceptable sampling 
frequency, then pfs , where p is integer valued, is also an acceptable sampling 
frequency. For example, if fs = 4.33fo, then fs = 8.66fo and fs = 13fo 
are also acceptable sampling frequencies, as shown in Figs. 14.3(d), G), and 
(k). This follows from the periodicity of the sequence of sampling impulse
frequency functions. We conclude that the determination of sampling-fre
quency intervals that do not produce overlapped spectrum results is non
trivial. Both Eq. (14.1) and a graphical analysis are helpful. 

An alternate way of examining the band-pass sampling theorem is to 
note that for each case illustrated in Fig. 14.3, the band-pass-frequency func
tion with central frequency 14fo is shifted or translated by the down-sam
pling, or decimation, process. This interpretation of band-pass sampling is 
explored further in the following example. 

Example 14.1 Down Sampling: A Special Case of Frequency Down Conversion 

Recall from Ex. 3.8 that frequency shifting or down conversion occurs when a time 
function h(t) is multiplied by a sinusoidal waveform offrequency fo. From the Four
ier transform frequency-shifting property, the result of sinusoidal multiplication is 
to shift H(f), the Fourier transform of h(t), such that the original spectrum is now 
centered at fo ± fe, where fe is the center frequency of the spectrum H(f). As 
shown in the development of Ex. 3.8, spectrum shifting occurs because time-domain 
multiplication requires frequency-domain convolution. H(f) is convolved with a pair 
of impulse functions located at ±fo which is the Fourier transform of a sinusoidal 
waveform. Down sampling can be interpreted as a special case of frequency down 
conversion. 

The pair of impulse functions located at frequency ±6fo in Fig. 14.2(d) can 
be interpreted as the Fourier transform of a cosine waveform. Hence, from the 
frequency-shifting theorem, the band-pass spectrum centered at + 8fo in Fig. 14.2(c) 
is shifted and centered at frequencies (8 - 6)fo and (8 + 6)fo. Similarly, the band
pass spectrum centered at -8fo is shifted and centered at frequencies (-8 - 6)fo 
and (-8 + 6)fo. The result is then the spectrum centered at ±2fo, as shown in Fig. 
14.2(0, and ± 14fo. 

Similar to the arguments above, the pair of impulse functions located at fre
quency ± 12fo, which is not shown in Fig. 14.2(d), result in spectrum being shifted 
to frequencies of ± (12 - 8)f 0 and ± (12 + 8)f o. The spectrum pair located at ± 4f 0 

are shown in Fig. 14.2(d). Note that this pair is spectrum inverted in that the positive 
frequency band-pass spectrum is centered at -4fo and the negative frequency band
pass spectrum is centered at +4fo. 

Summary 

Because down sampling results in frequency translation of the band
pass signal, it is possible to position the translated spectrum by an appro-
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priate choice of sampling frequency fs. Note from Fig. 14.3 that the selection 
of fs satisfying Eq. (14.1) such that nfs = if, where n is integer valued, 
translates the band-pass signal spectrum interval, 13fo < f < 15fo, to the 
frequency interval, 0 < f < 2fo, which is generally referred to as the low
pass signal equivalent of the band-pass signal. Sampling frequencies fs = 
4.33fo for n = 3, fs = 6.5fo for n = 2, and fs = 13fo for n = 1 satisfy this 
condition and the graphical results are shown in Figs. 14.3(d), (i), and (k), 
respectively. For many signal-processing applications, down sampling to the 
low-pass signal equivalent is the preferred approach. Also note that selection 
of the sampling frequency such that nfs = fh also translates the band-pass 
signal to a low-pass equivalent, as shown in Figs. 14.3(t) and (i), but the 
spectrum is inverted. 

It is also possible to select a sampling frequency that results in a fre
quency translation to zero center frequency. Note from the graphical de
velopment in Fig. 14.3 that if nfs = (fh - fl)/2, that is, the center frequency 
of the band-pass spectrum, then translation to zero center frequency results. 
This selection of fs always produces spectrum overlap and does not satisfy 
Eq. (14.1). In most cases, spectrum overlap is an irreversible operation (see 
Prob. 14.3). However, waveforms that are down sampled to zero center 
frequency are always recoverable if the band-pass signal is quadrature sam
pled, as is discussed in the following section. 

14.2 QUADRATURE SAMPLING 

Applications ofthe FFT are sometimes limited by the sampling rates achiev
able by analog-to-digital converters. For these cases, it is possible to achieve 
a lower sampling rate by separating the signal into two waveforms, or chan
nels, and sampling each channel. This concept is based on the principle that 
a signal can be expressed in terms of two waveforms called quadrature 
functions. Each of the two quadrature functions occupies only one-half the 
bandwidth of the original signal. Hence, it is possible to sample each quad
rature function at one-half the sample rate required to sample the original 
signal. We now develop the concept of quadrature functions and quadrature 
sampling. 

Quadrature Functions 

To demonstrate the concept of quadrature functions, consider Fig. 
14.4. We show in Fig. 14.4(a) an example waveform that is assumed to be 
band-limited with bandwidth fh' as illustrated in Fig. 14.4(c). To derive the 
quadrature functions for this waveform, it is necessary to multiply Fig. 
14.4(a) by both cosine and sine waveforms. 

We show the required cosine waveform Yi(t) in Fig. 14.4(b). We use 
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Figure 14.4 Fourier transform of the in-phase waveform used in quadrature 
sampling. 

the subscript i to indicate that the cosine waveform has been chosen as the 
reference or in-phase sinusoid. Note that the frequency of this sinusoid is 
f 0 = f h12, the center frequency of the positive frequency range of the band
limited signal, as shown in Fig. 14.4(c). Multiplication in the time domain 
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requires convolution in the frequency domain and the overlapped spectrum 
of Fig. 14.4(0 results. For ease of discussion, we have constructed h(t) as 
an even function and hence H(f) is real. Therefore, the convolution result 
shown is a real frequency function. Note that we have low-pass filtered the 
convolution result and have eliminated the convolution terms that are cen
tered at frequencies ± 2f o. 

The modulation process just described shifts or translates to zero center 
frequency the spectrum shown in Fig. 14.4(c). An inspection of Fig. 14.4(0 
also reveals that the translated waveform has a bandwidth of fhl2. However, 
spectrum foldover has occurred. As a result, if one samples the waveform 
of Fig. 14.4(e) with sample frequency fh satisfying the Nyquist criteria, the 
original time waveform cannot be recovered because of the folded spectrum. 
To recover the original waveform, it is necessary to define the second of 
the two quadrature functions. 

In Fig. 14.5, we repeat the development of Fig. 14.4 with the exception 
that we multiply by the sine waveform shown in Fig. 14.5(b). If we low-pass 
filter the product of Figs. 14.5(a) and (b), the resulting waveform of Fig. 
14.5(e) is termed the quadrature function in that it is obtained by mUltipli
cation with a sine waveform that is 90° out of phase or in quadrature with 
the cosine waveform of Fig. 14.4(b). 

By applying the frequency-convolution theorem, we obtain the fre
quency function illustrated in Fig. 14.5(0. Note that the Fourier transform 
of the sine waveform is purely imaginary, as illustrated in Fig. 14.5(d). 
Hence, convolution with the real frequency function of Fig. 14.5(c) yields 
the imaginary frequency function illustrated in Fig. 14.5(0. Recall that con
volution requires that one of the functions be flipped prior to shifting and 
multiplication. The resulting frequency function has a bandwidth f hl2 with 
an overlapped spectrum. Low-pass filtering has eliminated the convolution 
terms that are centered at frequencies ±2fo. 

The waveforms of Figs. 14.4(e) and 14.5(e) are termed the in-phase 
and quadrature functions, respectively, because one is obtained by multi
plication (translation) with a cosine function and the other is obtained by 
mUltiplication (translation) with a sine function (that is 90° out of phase, or 
in quadrature, with the cosine function). The advantage of quadrature-func
tion representation can be seen by comparing the frequency functions of 
Figs. 14.4(0 and 14.5(0. Both the in-phase and quadrature waveforms have 
a bandwidth of fhl2. Hence, each can be sampled according to the Nyquist 
sampling criteria at a sample rate of fh samples per second. We show in a 
later development that these sampled results can be appropriately combined 
to eliminate the spectrum overlap that occurs. 

Note that the total number of samples per unit of time that result from 
sampling the quadrature functions is exactly the same as obtained by sam
pling a function with bandwidth fh. However, with quadrature functions, 
we have separated the original waveforms into two channels, an in-phase 
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Figure 14.5 Fourier transform of the quadrature waveform used in quadrature 
sampling. 
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and a quadrature channel, where the analog-to-digital converter for each 
channel can operate at one-half the speed required in a single-channel ap
proach. If analog-to-digital-converter or digital-processor speed is a limiting 
function, a factor of two could be of primary concern. 

Recombination of Quadrature Functions 

A careful recombination of the in-phase and quadrature sampled func
tions is necessary to obtain the original waveform and eliminate spectrum 
overlap. In Fig. 14.6, we show a diagram of the quadrature-processing tech
nique described previously as well as a procedure for recombining quad
rature functions to produce the original real band-limited signal h(t). Note 
that we recover the original signal by mUltiplying the in-phase channel by a 
cosine waveform with frequency fo, the center frequency of the original 
band-limited signal. The quadrature channel is mUltiplied by a sine waveform 
with frequency fo. These results are then added and multiplied by a scale 
factor of two to recover the original signal. The interpolation function shown 
in Fig. 14.6 is discussed later. 

Figures 14.7 and 14.8 illustrate the rationale underlying the recovery 
technique diagrammed in Fig. 14.6. In both illustrations, we use the graphical 
frequency-convolution procedure, but we only show the frequency-domain 
functions. Figures 14.7(b) and (c) are the Fourier transforms of the in-phase 
quadrature function and the cosine waveform, respectively, which are mul
tiplied to recover the original waveform. Convolution yields the frequency 
function illustrated in Fig. 14.7(a). 

Figure 14.8 depicts the frequency-domain results of mUltiplying the 
quadrature channel waveform determined in Fig. 14.5(e) by a sine waveform 
of frequency f o. The Fourier transforms of the quadrature function and the 
sine waveform are illustrated in Fig. 14.8(b) and (c), respectively. Because 

QUADRATURE SAMPLING SIGNAL RECONSTRUCTION 

Figure 14.6 Block diagram of the quadrature-sampling and signal-recombination 
processes. 
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Figure 14.7 Frequency function resulting from the cosine modulation of the in
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Figure 14.8 Frequency function resulting from the sine modulation of the quad
rature channel waveform. 
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both frequency functions are imaginary, then their convolution is a real 
function, as shown in Fig. 14.8(a). To produce the results of Fig. 14.8(a), 
flip one of the functions prior to convolution and take into account the P = 

-1 term. 
Now consider Figs. 14.7(a) and 14.8(a); both frequency functions are 

real. Addition of the two functions gives the original signal-frequency func
tion of Fig. 14.4(c) (except for a scale factor of two). Because we assumed 
that the band-limited signal spectrum H(f) was real, then no complex terms 
occurred in the example signal-recovery process. The general procedure for 
signal reconstruction is to multiply the complex sampled signal (i.e., the in
phase and quadrature samples, a + jb) by the sampled complex exponential 
e -j2Tr fo t • The desired waveform is then the real part of this complex product: 

Real {(a + jb)[cos(21Tfot) - j sin(21Tfot)]} 

= Real {[a COS(21Tfot) + b sin(21Tfot)] 

+ j[ -a sin(21Tfot) + b COS(21Tfot)]} 

= a COS(21Tf ot) + b sin(21Tf o)t 

(14.2) 

The signal-reconstruction process requires that we translate (frequency 
shift) the quadrature functions up in frequency. As a result, the required 
sampling rate must be increased and interpolation is required because we 
have sampled at the lower rate. As discussed previously in the development 
of the Nyquist sampling theorem, [sin(t)]/t interpolation yields exact results. 
We interpolate both the in-phase and quadrature waveforms prior to mul
tiplication by the complex exponential. For the example shown, we need 
interpolate only one sample between each output sample of the analog-to
digital converter. The bandwidth (highest frequency) of the signal after mul
tiplication by the complex exponential (i.e., after translation) determines the 
number of interpolated samples that are required. 

Example 14.2 Quadrature Sampling of Band-Pass Signals 

We show in Fig. 14.9 an example band-pass waveform with transmission bandwidth 
BT = 10 and center frequency 510' To derive the quadrature waveforms for the band-
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Figure 14.9 Time- and frequency-domain representations of the band-pass signal 
for Ex. 14.2. 
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pass signal, we multiply by cosine and sine waveforms with frequency 5fo. The in
phase component after low-pass fIltering is given by 

h(t)y;(t) = {COS[21T(5fo + f o/2)t] - '12 COS[21T(5fo - f o/2)t]} cos[2'lT(5fo)t] 

= '12 cos[21T(fo/2)t] - '14 cos[21T(fo/2)t] 

(14.3) 

The quadrature component after low-pass fIltering is given by 

h(t)Yq(t) = {COS[21T(5fo + fo/2)t] - '12 COS[21T(5fo - f o/2)t]} sin[21T(5fo)t] 

= - '12 sin[21T(f 0/2)t] - '14 sin[21T(f 0/2)t] 

(14.4) 

In Figs. 14.10 and 14.11, we use the graphical frequency-convolution theorem 
to develop the frequency functions corresponding to Eqs. (14.3) and (14.4). Figures 
14.IO(b) and (c) are the Fourier transforms of the band-pass signal h(t) and the cosine 
waveform with frequency 5fo, respectively. Convolution and low-pass fIltering yield 
the frequency function illustrated in Fig. 14. lO(a) , the Fourier transform ofEq. (14.3). 
Note that the frequency function has a bandwidth f o/2 and spectrum foldover has 
occurred. 

In Fig. 14.11, we develop the frequency function corresponding to Eq. (14.4). 
Convolution of the frequency functions of Figs. 14.11(b) and (c) yields the quadrature 
frequency function illustrated in Fig. 14.11(a). This frequency function has bandwidth 
f o/2 with an overlapped spectrum. Note that both Eqs. (14.3) and (14.4) could be 

REAL H(I) • V,(I) 

(a) 

/ CONVOLUTION ~ 
REAL H(I) REAL vm 

y, 

'/" 

-Slo -310 -10 10 210 310 410 Sio 610 -510 510 

(b) (e) 

Figure 14.10 Fourier transform of the quadrature waveform for Ex. 14.2. 
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Figure 14.11 Fourier transform of the in-phase waveform for Ex. 14.2. 
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5fo 

reduced to a single term through addition. This is the mathematical evidence of the 
problem of spectrum overlap that has been graphically addressed. 

Both the in-phase spectrum of Fig. l4.l0(a) and the quadrature spectrum of 
Fig. 14.11(a) have a bandwidth of f o/2. Hence, each can be sampled at a Nyquist 
rate of fa samples per second as compared to sampling the original band-pass wave
form with the Nyquist sampling rate of 2BT = 2fo. To reconstruct a real waveform, 
we multiply the in-phase and quadrature time-domain samples by the sampled com
plex exponential e - j2-rrJ' t, where f' is the desired center frequency of the recon
structed waveforms. Assume f' = fa. Multiplication by the complex exponential 
e - j2-rrfot translates each quadrature spectrum to a center frequency of f o. The highest 
frequency of the translated waveform is then 3fo/2 and both the in-phase and quad
rature functions of Eqs. (14.3) and (14.4) must be interpolated before multiplication 
to obtain a sampling rate three times the original sample rate. 

Figure 14.12(a) illustrates the frequency-domain results o:'tained by multiply
ing the in-phase waveform of Eq. (14.3) by rj(t) = cos(27rfot). Multiplication of the 
quadrature function of Eq. (14.4) by rq(t) = sin(27rfot) results in the frequency 
function shown in Fig. 14.12(b). Addition of the two frequency functions cancels 
the unwanted overlapped frequency components. The result H'(f) in Fig. 14.12(c) 
is the original signal-frequency spectrum except the spectrum is now centered at 
frequency fa and must be multiplied by a scale factor of two. 
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Figure 14.12 Example frequency function for Ex. 14.2: (a) cosine modulation of 
the in-phase channel, (b) sine modulation of the quadrature channel, and (c) sum
mation of parts (a) and (b). 

Summary 

As shown, quadrature sampling can be applied to baseband and band
pass signals. If a baseband or band-pass signal with bandwidth BT is trans
lated in quadrature to zero center frequency, then each quadrature function 
can be sampled according to the relationship: 

(14.5) 

without loss of information. The quadrature sampled waveforms must be 
reconstructed by the technique diagrammed in Fig. 14.6 to recover the orig
inal signal. From Eq. (14.5), quadrature sampling allows the analog-to-digital 
converter to operate at one-half speed. As experimenters continue to press 
the state of the art in digital signal processing, analog-to-digital-converter 
speed is often the limiting constraint. 

Recall from Chapter 13 that the real and imaginary FFT outputs are 
in quadrature (i.e., complex). Hence, FFT band-pass filter applications are 
a special case of quadrature sampling in that the output waveforms of each 
FFT band-pass filter are in quadrature. It then follows that these quadrature 
waveforms can be translated, or down sampled, to zero center frequency 
without incurring irrecoverable spectrum overlap. This similarity follows in 
that the processes of quadrature frequency translation to zero center fre-
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quency and sampling can be interchanged. In quadrature sampling, we de
velop zero-center-frequency waveforms in quadrature prior to sampling. 
Conversely, in FFT band-pass filtering, we first obtain samples of the quad
rature band-pass waveform and then translate, or down sample, to zero 
center frequency. 

14.3 FFT SIGNAL DETECTION 

An important application of the FFT is in signal detection. The detection of 
a narrow-band signal buried in noise is a common signal-processing problem 
in communications, radar, and sonar systems. We describe in this section 
example experimental results of applying this basic signal-analysis property 
of the FFT. Application of the FFT to digital matched filtering is also 
explored. 

Signal Extraction Through FFT Resolution 
Improvement 

In Fig. 14.13(a), we show a sampled time-domain sinusoid buried in 
white noise. As illustrated, there is no appearance of a sinusoid, only noise. 
The signal-to-noise ratio is -12 dB. Obviously, one could never detect the 
presence of the sinusoid by examination of the time-domain samples shown. 

In the frequency domain, we know that the periodic sinusoid has its 
energy concentrated in a very narrow frequency band, whereas the noise 
power is spread throughout the frequency domain. Hence, if we take the 
FFT of the waveform illustrated in Fig. 14. 13 (a) , we expect all the sinusoidal 
signal energy to be concentrated in a few contiguous samples of the FFT 
output. Recall from Chapter 13 that the N-output FFT samples can be in
terpreted as the output of N/2 contiguous band-pass filters. 

Figure 14.13(b) illustrates the FFT of the waveform of Fig. 14. 13(a). 
For this example, N = 64; the 32 sample points shown in Fig. 14.13(b) 
represent the output power of each FFT filter. Power is computed as the 
sum of the square of the real and imaginary component of each filter output. 
This result is doubled to account for negative frequency results. Although 
the sample value representing the sinusoidal signal has a larger amplitude 
than other samples, an experimenter could not be certain that the sample 
represents a periodic signal. 

To firmly establish the presence of a signal, it is necessary to spread 
the noise over more data points. Hence, we increase N to 512. In Fig. 
14.13(c), we show the resulting 256 FFT sample outputs. The presence of 
a periodic signal in the noisy spectrum is very identifiable. 

To compute the signal-to-noise ratio improvement that is achieved in 
Fig. 14.13(c), note that the noise power has been evenly spread throughout 
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256 samples. Equivalently, the wideband noise has been filtered by 256 con
tiguous filters and the noise power output in the filter that contains the signal 
has been reduced by 10 10glO (1/256) = - 24 dB. Because the signal power 
is concentrated in a single FFT filter, then the signal power is not reduced 
by the FFT. If the original signal-to-noise level was -18 dB, then the output 
signal-to-noise ratio of the FFT filter containing the signal is -18 - (- 24) 
= 6 dB. The sample indicating the signal in Fig. 14. 13(c) is clearly visible 
above the noise. 

FFT Averaging 

Signal-to-noise enchancement as previously discussed cannot be ex
tended indefinitely. Sometimes the size of the FFT (i.e., the number of 
filters) cannot be increased further because of computer memory limitations. 
Another limiting factor is that the signal itself can spread over several con
tiguous FFT filters because of its bandwidth. For these cases, improvement 
in signal detectability can be achieved by averaging successive FFT power 
outputs. The effect of averaging is to smooth and reduce wild amplitude 
variations that could be interpreted as sinusoidal signal components. 

In Fig. 14. 14(a) , we show the FFT spectrum (N = 512) of a periodic 
signal buried more deeply in noise than that previously considered. The 
periodic component is not detectable. Assume that constraining factors limit 
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Figure 14.14 Example signal buried in noise, where SIN = -24 dB: (a) FFT 
spectrum results for N = 512, and (b) averaged spectrum for 64 successive FFTs 
with N = 512. 
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the experimenter to an FFT of size N = S12. Averaging successive FFTs 
of this size is the appropriate signal-analysis procedure. 

The resulting averaged spectrum is shown in Fig. 14.14(b) for 64 av
eraged spectrums. The noise is now smoothed significantly and the signal 
is clearly visible above the smoothed noise level. It is to be noted that the 
power outputs of each FFT filter are averaged for the successive FFTs. 
Hence, the phase of the input sinusoid is considered unknown and is not 
taken into consideration. 

The mathematics involved in analyzing the signal-to-noise enhance
ment illustrated in Fig. 14.4(b) is extremely complicated (Refs. [9] and [21]). 
However, as a summary, in those cases where the original signal-to-noise 
ratio is - 30 dB or less, the described averaging enhances signal detectability 
by approximately I.S log2 Q dB, where Q is the number of successive FFTs 
that are averaged. For original signal-to-noise ratios well above - 30 dB, 
the detectability gain approaches 3.0 log2 Q dB. 

The signal illustrated in Fig. 14.14(a) is 24 dB below the noise level. 
The number of successive FFTs averaged together is 64 = 26 and the FFT 
size is N = S12. Averaging yields an enhancement of I.Slog2 Q = I.S log2 
26 = 9 dB. From the results leading to Fig. 14. 13(c) , we know that the S12-
point FFT results in a 24 dB gain in signal-to-noise ratio. Hence, the pro
cessed signal-to-noise ratio is 24 + 9 - 24 = 9 dB and the signal is clearly 
visible, as shown in Fig. 14.14(b). 

The examples presented may appear as a simplistic application of the 
FFT to the signal-detection problem. However, it can be shown that the 
optimum signal-detection receiver for narrow-band signals with random 
phase, unknown frequency, and constant amplitude is a bank of band-pass 
filters followed by a decision threshold (Ref. [23]). 

FFT Matched Filtering 

A matched filter is the signal processor design that optimizes the peak 
received signal-to-noise power ratio in the presence of additive white Gaus
sian noise. Mathematically, a matched filter frequency response is given by 
S*(f), where * indicates conjugation if the received signal s(t) has a Fourier 
transform S(f). Practical high-speed matched-filter realizations are easily 
achieved because of the ease of FFT frequency-domain processing. 

Figure 14.1S illustrates the concept of a FFT matched-filter signal pro
cessor. The input signal is transformed to the frequency domain using the 
FFT and is multiplied by a stored frequency-domain conjugate replica of the 
received signal. At inverse FFT yields the desired matched-filter output 
waveform. This output waveform is then compared to a threshold to deter
mine the presence or absence of the desired signal. The optimum signal 
detector of a phase-modulated sinusoidal pulse in white noise is a set of 
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matched filters to the in-phase and quadrature-phase components of the 
signal. For this reason, the FFT can be used in radar signal processors. 

Possibly the most important aspect of FFT matched filtering is the 
flexibility allowed the signal designer. Waveform variations are easily pro
cessed by simply storing the appropriate FFT coefficients. One can envision 
a system where the signal and hence the matched filter can be changed 
rapidly. 

14.4 FFT CEPSTRUM ANALYSIS: ECHO AND MULTIPATH 
REMOVAL 

Cepstrum signal-processing techniques (Refs. [2] and [3]) are of considerable 
utility. Specifically, these procedures are based on the premise that when 
one examines the frequency transform of the logarithm of the Fourier trans
form, certain contaminating components, such as noise, unwanted signals, 
etc., can be isolated. Cepstrum analysis is applied to many problem areas, 
including noise reduction in speech, sonar echo removal, radio-frequency 
multipath interference rejection, image processing, and removal of multiple 
reflections in seismology. Because the analysis approach is generally an art
science, we find it more meaningful to examine FFT cepstrum analysis tech
niques by means of specific examples. In this section, we describe FFT 
cepstrum analysis as applied to the detection and removal of multi path in
terference or echos from a desired waveform (Ref. [12]). 

Multipath or Echo-Removal Problem Definition 

Assume that a received signal sr(t) is given by 

Sr(t) = s(t) + aos(t + 'l"/) (14.6) 

where s(t) is the transmitted or desired signal and s(t + 'l"/) is a multipath 
or echo component. The constant ao is the relative attenuation between the 
direct and multipath components of the signal. If we take the Fourier trans-
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form of Eq. (14.6) and then the logarithm, we obtain 

log S r(f) = 10g[S(f) + aoS(f)ej21TfTl] 

= 10g[S(f)(1 + aoej21TfTl)] 

= log S(f) + 10g(1 + aoej21TfTl) 

= log S(f) - L (- W(a3In)ej21TfTl 
n=\ 

(14.7) 

where the last term in Eq. (14.7) was obtained by a series expansion. The 
Fourier transform of Eq. (14.7) is given by 

C[log Sr(f)] = C[log S(f)] - L (-l)n(a3In)8('J" - n'l"/) (14.8) 
n=\ 

where C[ ] is taken as the Fourier transform. The Fourier transform of the 
log of the spectrum frequency function is called the cepstrum. Note that the 
first term on the right-hand side of Eq. (14.8) is the cepstrum of the trans
mitted or desired signal. The remaining term is a sequence of impulse 
functions. 

Cepstrum analysis then transforms the unwanted echo or multipath 
signal component into a series of evenly spaced impulse functions. In Fig. 
14.16(a), we show the cepstrum of the signal only, and in Fig. 14.16(b), we 
show the cepstrum of the signal plus the unwanted multi path signals. Theo
retically, the echo can be removed by removing the impulse functions and 
then inverting the whole process to recover the transmitted signal. 

FFT Echo and Multipath Removal Implementation 

We implement the cepstral analysis procedure by means of the block 
diagram illustrated in Fig. 14.17. The log operation implies an exponential 
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Figure 14.16 Example depicting cepstrum analysis that identifies multi path signal 
components as impulse functions. 



Sec. 14.4 FFT Cepstrum Analysis: Echo and Multipath Removal 

PROCESSED 
SIGNAL 

343 

Figure 14.17 Block diagram of cepstrum signal-processing procedure for re
moving unwanted echo or multipath signals. 

logarithm of both the real and imaginary parts of the FFT output. In par
ticular, because the output of the FFT is of the form [R(nfo) + jI(nfo)], 
then 

10ge[R(nfo) + jI(fo)] = logeHR2(nfo) + P(nfo)]I/2ejOn} 

where 

= loge[R2(nfo) + P(nfoW l2 + loge ejOn 

= loge[R2(nfo) + P(nfo)]112 + jan 

(14.9) 

(14.10) 

The real part of the loge operation is placed in the real part of the FFT and 
the imaginary part is placed in the imaginary part of the FFT. The resulting 
FFT yields the quefrequency series of Eq. (14.8). Because FFT use implies 
finite-duration waveforms, then the impulse-response functions of Eq. (14.4) 
become [sin(T)]h functions. Manual or automated procedures can be used 
to identify and supress or filter the unwanted [sin(T)]h functions. 

We show in Fig. 14.18 the results of the implementation of the FFT 
cepstrum processing procedure defined in Fig. 14.17. In Fig. 14.18(a), we 
show an example transmitted signal with no multipath or echoes. Figure 
14. 17(b) illustrates the example signal with interfering multipath or echoes 
present. Cepstrum analysis of the contaminated signal of Eq. (14.8) using 
the FFT is shown in Fig. 14.18(c). The [sin(T)]h function at T[ is the undesired 
echo signal. In Fig. 14.18(d), we set the echo functions to zero. Sequential 
inverse FFT, antilogarithm, and inverse FFT operations result in the re
covered signal shown in Fig. 14.18(e). 
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S(I) - Transmitted Signal 

(a) 

S.(I) - Received Signal 

C[log[S.(f)]) - Cepslrum 

(e) 

C[log[S.(f))] - Processed Cepslrum 

(d) 

5(1) - Reconstructed TransmItted SIgnal 

(e) 

Figure 14.18 Example FFT results of the application of the block diagram of Fig. 
14.17. 
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14.5 FFT DECONVOLUTION 

In the discussion of the FFT digital filter design in Chapter 12, we assumed 
that we could always compute a finite-duration filter impulse response. De
convolution filter design problems do not normally satisfy this requirement 
and modifications to the techniques described in Chapter 12 are necessary. 
We develop in this section an FFT procedure for designing digital decon
volution filters. The technique is applicable to a wide variety of problems: 
spectral broadening in spectography, well logging in oil exploration, seismic 
exploration in geophysics, contrast enhancement in optics, and restoration 
of the output waveform of band-limiting filters (Refs. [2], [10], and [22]). 

Deconvolution Problem Definition 

To define the deconvolution problem, consider Fig. 14.19. If a signal 
is passed through a filter whose bandwidth is less than that of the signal, 
the result is a smearing or broadening of the input waveform. Often com
pensation of the filter itself can be employed to remove this unwanted dis
tortion. An alternate or sequential approach is to apply appropriate mathe
matical procedures to the output waveform and thereby restore the input 
waveform. Because the output of a filter can be written as the convolution 
ofthe input waveform and the impulse response of the filter, then the mathe
matical operation for attempting to remove this convolution operation is 
termed deconvolution. 

Mathematically, the deconvolution problem is stated as follows. Recall 
from Ex. 4.4 that a linear system is characterized by the convolution integral: 

y(t) = J:"" x(T)h(t - T) dT (14.11) 

where x(t) is the input signal, h(t) is the system impulse response, and y(t) 
is the output signal. In this discussion, we assume that the impulse response 
is known. Given h(t) and the output y(t), it is desired to determine the input 
signal x(t). From the convolution theorem, we can write Eq. (14.11) equiv
alently in the transform domain as 

Y(f) = X(f)H(f) (14.12) 

The theoretical inverse filter R(f) can be determined by solving for XU) in 

FILTER ~ DECONDITION JL .. FILTER X(I' x(I' hIt' y(t, 
r(t, 

Figure 14.19 Graphical definition of the deconvolution filtering problem. 
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Eq. (14.12): 

X(f) = [11 H(f)] Y(f) = R(f) Y(f) R(f) = II H(f) (14.13) 

or, equivalently, 

x(t) = ret) * yet) (14.14) 

The meaning of the term deconvolution filter is now apparent. Theoretically, 
we can recover the signal x(t) perfectly, but as will be seen in the following 
discussion, practical considerations force us to determine xct), an estimate 
of x(t). 

FFT Deconvolution Filter Design 

From Eq. (14.13), the inverse filter is defined in the frequency domain 
as R(f) = IIH(f); thus, we have a frequency-domain specification FFT 
digital filter-design problem. However, in general, H(f) tends to zero as 
frequency increases and, as a result, R(f) tends to infinity as frequency 
increases. For this reason, it is normally impossible to sample this frequency 
function and compute an inverse filter impulse response rCt) of finite 
duration. 

A logical way to approach this issue is to multiply II H(f) by a truncation 
function W(f). The resulting frequency function is then zero for all fre
quencies greater than the truncation frequency f co This apparently solves 
the problem in that it is now feasible to evaluate the inverse discrete trans
form of W(f)/H(f). However, we know from previous discussions that trun
cation in the frequency domain yields ripples in the time domain. As a result, 
W(f) must be chosen to be a function that gently tapers to zero for some 
frequency f c and is zero for f > f c. A good compromise is the Hanning 
function. Figure 14.20 illustrates the proposed frequency-domain modifi
cation concept. 

The required frequency-domain approximation is obtained by modi
fication of Eq. (14.13): 

X(f) = [W(f)/ H(f)] Y(f) = R(f) Y(f) (14.15) 

where W(f) is the truncation function and 

R(f) = W(f)/ H(f) (14.16) 

The approximation of Eq. (14.15) is the inverse filtering equation that we 
implement by means of the FFT. Note that R(f) is simply a frequency
domain specification of a filter, as discussed in Chapter 12. 
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Figure 14.20 Weighting-function modification of the inverse filter frequency 
response. 

FFT Deconvolution Implementation 

To illustrate deconvolution filter design, assume that the impulse re
sponse of a nonphysically realizable system is given by the function: 

h(t) = 1/2ue-at (14.17) 

This impulse-response function is representative of system responses found 
in many practical signal-restoration problem areas. The Fourier transform 
of Eq. (14.17) is 

(14.18) 

The analytical expression for the inverse filter frequency response for 
a Hanning truncation function is 

R(f) 
1/2 + Y2 cos(7rf/fe) 

U2/[U2 + (27rf)2)] 

o 
(14.19) 

f > fe 

This frequency-response function is sampled and a filter is designed by the 
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FFT frequency-domain design procedures developed in Chapter 12. Recall 
that care must be exercised to avoid convolution end effects. 

To indicate the degree of signal restoration that can be accomplished 
by FFT deconvolution filtering, a simulated input waveform consisting of a 
sum of Gaussian functions is assumed. The input signal and the waveform 
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Figure 14.21 Example deconvolution waveforms: (a) low-pass system input and 
output waveforms, and (b) deconvolution results as a function of the truncation 
frequency f c. 
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resulting from its convolution and the exponential impulse response of Eq. 
(14.17) are shown in Fig. 14.21(a). It is this output signal to which the inverse 
digital filter of Eq. (14.19) is applied. 

Figure 14.21(b) illustrates deconvolved waveforms as a function of the 
parameter fe. Because parameter fe determines the width of the frequency
domain truncation function, we observe that as f e is increased, the decon
volved waveform more closely approximates the input signal. Note that for 
all practical purposes, the input signal is completely restored; the degree of 
deconvolution that is possible is limited principally by the presence of noise. 

If we assume that the signal and noise cannot be identified with respect 
to the statistics required for the application of sophisticated statistical de
convolution techniques, then the procedure developed here is experimen
tally applied. We simply decrease the value of the parameter fe until sat
isfactory results are achieved. In general, if a high level of noise is added 
to either the impUlse response or the output, then reasonably accurate de
convolution is not possible. The deconvolution approach proposed here must 
be modified if the filterfunction is zero-valued for f < fe, (see Prob. 14.17). 
Silverman [22] describes a theoretically more correct although more com
plicated FFT deconvolution procedure. 

14.6 FFT ANTENNA DESIGN ANALYSIS 

The Fourier transform has long been recognized as a useful tool in the so
lution of antenna design problems. However, these analyses were largely 
limited to those cases for which the Fourier integrals could be evaluated by 
classical methods. With the FFT, Fourier transform analysis is considerably 
more effective. 

In this section we develop the fundamentals for applying the FFT to 
antenna design analysis. Our approach is limited to a consideration of one
dimensional apertures. This may appear inadequate in that antennas are 
generally considered in two dimensions. However, the treatment is adequate 
for a great many antennas whose directivity is separable into a product of 
directivities of one-dimensional apertures and where spacial patterns are 
surfaces of revolution of the two-dimensional pattern that is produced by 
the one-dimensional aperture. Further, the one-dimensional case develops 
the analogy of antenna patterns and the Fourier transform. Our results are 
readily extendable to two dimensions. 

Fourier Transform Relationship Between Antenna 
Aperture Distribution and Far-Field Pattern 

Consider the electric field distribution over the aperture of length a, 
as shown in Fig. 14.22. This electric field aperture distribution model rep-
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E(x)-ELECTRIC FIELD APERTURE 
DISTRIBUTION 

a 
2" 

T 
r 

x 
Figure 14.22 One-dimensional antenna 
electric field aperture distribution. 

resents a conventional electromagnetic horn antenna or a simple dipole an
tenna. As shown, the electric field is zero over the part of the plane occupied 
by the conductor but has a uniform electric field distribution over the horn 
opening (or dipole dimension). 

The far-field pattern, as a function of 6, where 6 is measured from the 
perpendicular to the aperture distribution, is given by (Refs. [1] and [13]): 

E(6) = f:oo E(x)e - j21Tx[sin(9)]/>. dx (14.20) 

where E(x) = electric field aperture distribution, volts/meter; 
E(6) = far-field radiation pattern, volts; 

6 = direction of antenna field pattern measured from perpendic
ular to aperture dimension, degrees. 

Equation (14.20) is a Fourier transform, where the aperture dimension x is 
analogous to time t and the direction function [sin(6)]!A is analogous to fre
quency f in the conventional Fourier transform relationship. 

Note that the analogous relationship between frequency f and [sin(6)]/ 
A must be interpreted correctly in that the variable f is defined from - 00 to 
+ 00, whereas 6 is periodic over the interval 0 to 211". As a result, the Fourier 
transform relation of Eq. (14.20) is uniquely defined over a finite range of 
the variable 6. We further explore this antenna pattern Fourier transform 
interpretation problem in the following example. 

Example 14.3 Antenna Far-Field Pattern Fourier Transform Computation 

Assume that the electric field aperture distribution E(x) is as shown in Fig. 14.22. 
Determine the far-field pattern from the Fourier transform relationship ofEq. (14.20) 
and compare with the conventional Fourier transforms results if Fig. 14.22 is con
sidered a time-domain waveform, that is, if the length dimension x is interpreted as 
a time dimension t. 

First, let us compute the conventional Fourier transform of the waveform il-



Sec. 14.6 FFT Antenna Design Analysis 351 

lustrated in Fig. 14.22: 

E(f) = fO", E(t)e -j2T,jt dt = L"'"" Eoe -j2-rrjt dt (14.21) 

= Eo [sin(1Taf)]/1Taf (14.22) 

As expected, the pulse waveform yields the [sin(f)]lf function of Eq. (14.22). This 
result is plotted in Fig. 14.23(a) for parameter a = 1. 

To determine the far-field antenna pattern, we use Eq. (14.20) and Fig. 14.22: 

E(6) = f-"'", Eoe -j2-rrx[sin(8)]/~ dx (14.23) 

= Eo sin{1Ta[sin(6)]/A} 
1Ta[sin(6)]/A 

(14.24) 

To plot the antenna pattern of Eq. (14.24), we must relate the antenna aperture 
dimension a to the frequency at which the antenna is to be used. Assume that a = 
2A. For this case, Eq. (14.24) yields the antenna pattern shown in Fig. 14.23(b). 

Now let us compare the results ofEqs. (14.22) and (14.24), that is, Figs. 14.22(a) 
and (b). As shown in Fig. 14.23(a), the frequency function is defined for all frequency 
values from +00 to -00. (The negative frequency function is a mirror image of the 
positive frequency function of Fig. 14.23(a) and is not shown for clarity.) In contrast, 
the antenna pattern in Fig. 14.23(b) is periodic over the interval -90° to + 90°. Hence, 
when one attempts to compare the two results, it is readily apparent that the con
ventional Fourier transform results of Fig. 14.23(a) must be truncated if we are to 
convert these results to those of Fig. 14.23(b). 

To determine the appropriate conversion factor and the truncation value, com
pare the defining relationships of Eqs. (14.21) and (14.23). We note the following 
equalities: 

x = t (14.25) 
[sin(6)]/A = f 

Hence, we convert Fig. 14.23(a) to Fig. 14.23(b). We determine 6 from the 
relationship 

(14.26) 

Because the maximum nonperiodic value of 6 is 90°, then the maximum value of f 
(i.e., the truncation value) occurs for fA = 1. Recall that A was chosen as al2 in 
Fig. 14.23(b) and a was chosen as 1 in Fig. 14.23(a). Hence, A = V2 and the 
truncation value of f is 2 Hz. As a result, to convert Fig. 14.23(a) to Fig. 14.23(b), 
we use only the main lobe and first side lobe of Fig. 14.23(a) and determine the 
abscissa axis 6 from Eq. (14.26). Note that we have illustrated by means of symbols 
on Figs. 12.22(a) and (b) several conversion values. As shown, we truncate the 
conventional Fourier transform results of Fig. 14.23(a) at f = 2 Hz. 

The results of Fig. 14.23(b) are plotted in conventional polar-coordinate form 
in Fig. 14.23(c). Observe that the results are symmetrical for angles greater than 
± 90°. This follows from our electric field aperture distribution assumption in that 
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Figure 14.23 (a) Conventional Fourier transform of the time function of Fig. 
14.22, (b) far-field antenna pattern for the aperture distribution of Fig. 14.22, and 
(c) polar coordinate graphical presentation of part (b). 
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Fig. 14.22 can be interpreted as the aperture distribution in any plane revolved around 
the abscissa axis. Hence, the antenna pattern is expected to be symmetrical. 

FFT Antenna-Pattern Computation 

To apply the FFT to the computation of antenna patterns, we simply 
implement the basic principles previously established. That is, we consider 
the aperture electric field distribution as a time-domain waveform; compute 
the FFT of this waveform and then apply the appropriate abscissa scale
conversion factor of Eq. (14.26). 

In Fig. 14.24(a), we show an example electric field aperture distribution 
that alternates in phase and has constant amplitude. Note that the aperture 
distribution function is symmetrical about the origin. We must be careful to 
preserve this relationship when applying the FFT. This is accomplished by 
sampling the aperture distribution function, as shown in Fig. 14.24(b). We 
use the fact that the sampled function to which the FFT is to be applied 
must be periodic. The number of zeros that one introduces is strictly a matter 
of choice as to the desired FFT frequency spacing to allow one to easily 
trace the side-lobe structure of the antenna pattern. 

Figure 14.24(c) illustrates the FFT of the sampled aperture distribution 
of Fig. 14.12(b). This result must be converted or transformed, as is de
scribed in Ex. 14.3. Let us assume that the distances shown in Fig. 14.24(a) 
are in meters and that we wish to determine the antenna pattern for a wave
length A = V2 m. Then, from Eq. (14.26), the truncation frequency value 
is 2 Hz. As a result, we transform or convert the FFT results of Fig. 14.12(c) 
to those of Fig. 14.24(d) by means of Eq. (14.26). Only the results for the 
frequencies 0 ~ f ~ 2 Hz are converted. As before, the antenna pattern for 
angles greater than ± 90° is a replica of the pattern for angles less than ± 90°. 
The corresponding polar plot is shown in Fig. 14.24(e). 

Recall that as the wavelength of the antenna becomes small with re
spect to the aperture dimension, then the main lobe of the antenna becomes 
narrow and the number of side lobes is increased. To see this effect, let us 
convert or transform the FFT results of Fig. 14.24(c) for a wavelength A = 
Vs m. From Eq. (14.26), the truncation frequency is now 5 Hz. We illus
trate the resulting converted polar plot in Fig. 14.24(t). 

We have developed a simplified application of the FFT to antenna
pattern analysis. Our approach requires a conversion ofthe far-field radiation 
integral of Eq. (14.20) to a Fourier Integral. A more detailed application of 
our approach is given in Ref. [25]. Results presented here can be extended 
to the two-dimensional analysis of antenna apertures. The radiation pattern 
of reflector antennas is determined in Refs. [5] and [14] by the FFT and a 
[sin(u)]/u sampling approach. Incorporation of the FFT with the conjugate 
gradient method is used to solve for the aperture fields and the induced 
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current densities for wire, wire mesh, and rectangular plate antennas in Refs. 
[7] and [20]. 

14.7 FFT PHASE-INTERFEROMETER MEASUREMENT 
SYSTEM 

The FFT can implement a phase-measurement system based on the inter
ferometer principle. Recall that the phase difference between waveforms 
received at two spatially separated sensors (antennas) separated by a dis
tance d can be used to determine the angle of arrival of the waveform from 
the relationship (see Fig. 14.25): 

o = sin - I (A<I>/2'TTd) (14.27) 

where 0 = angle of arrival 
A = signal wavelength 
<I> = phase difference 
d = antenna separation 

Equation (14.27) is the classical phase-interferometer equation for computing 
the direction of arrival of a plane wavefront. We now show the procedures 
for applying the FFT to phase-interferometer measurement systems. 

FFT Phase Interferometer 

The block diagram of an FFT interferometer direction-of-arrival system 
is illustrated in Fig. 14.25. As shown, the output of each sensor or antenna! 
receiver is sampled by an analog-to-digital (AID) converter and the FFT of 
each sensor output is computed. Because each resolution element of the 
FFT consists of a real and an imaginary term, then the phase On of each 
FFT filter output can be computed as 

lin = tan-1 [Real Output (Rn)] u n = 0, 1, ... , NI2 (14.28) 
Imag Output (In) 

Equation (14.28) is computed for the FFT outputs for each of the two chan
nels. Phase difference <l>n is then determined by simple subtraction for each 
FFT resolution cell (filter output). 

The next process step, system phase correction, is the single most 
practical consideration in considering the application of the FFT to inter
ferometer signal processing. A limiting factor in the accuracy of a direction 
finding system is the differential phase error between the two channels. 
System designers attempt to perfectly match the two channels from sensor 
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Figure 14.25 Block diagram of an FFf phase-interferometer measurement 
system. 

(or antenna) to receiver output, but in practice phase error exists. Calibration 
is often necessary to achieve sufficient accuracy. 

With an FFT implementation, it is possible to calibrate the system for 
all frequencies within the passband of the receiver. For example, a broad
band signal can be injected perpendicular to the sensor array. The phase 
difference between the two channels should be zero. If the phase difference 
between corresponding FFT cells differs from zero, this differential is due 
to system inaccuracies for that frequency cell and the error can be stored 
(by cell) as a system phase correction. System calibration can be repeated 
as often as required. 

The angle of arrival can be determined for each frequency cell of the 
FFT. If the signal bandwidth is greater than the FFT bandwidth, adjacent 
FFT cells should give near-identical results. Note that the proposed imple
mentation concept also yields the angle of arrival of multiple signals if their 
frequencies do not overlap. 
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Measurements in the Presence of Interference 

Another distinct advantage of an FFT interferometer system is the 
capability to cope with interfering signals. A conventional phase-measure
ment system normally is reasonably well-matched to the signal bandwidth 
and if an interfering signal overlaps any portion of this bandwidth, then the 
resulting phase measurement is in error. With the FFT approach, the re
ceiver output is divided by the FFT into a band of narrow-band filter outputs. 
The phase difference is computed simultaneously for each of the filter out
puts across the receiver bandwidth. In most instances, the interfering signal 
differs in angle of arrival from the signal of interest. Hence, on an angle
vs.-frequency plot, one will see two straight-line segments, one for the signal 
of interest and one for the interfering signal. Unless the interfering signal 
completely overlaps in frequency the desired signal, then an angle-of-arrival 
measurement can be made. 

FFT Monopulse Direction-Finding System 

The FFT can also be applied to the development of an amplitude
comparison monopulse direction-finding system. An amplitude comparison 
of each filter output provides the appropriate measurement. Note that, as 
in the interferometer case, it is straightforward to develop a calibration pro
cedure for each FFT resolution cell. 

14.8 FFT TIME-DIFFERENCE-OF-ARRIVAL 
MEASUREMENT SYSTEM 

The accurate measurement of the time difference of arrival for narrow-band 
signals arriving at spacially separated sensors is an excellent application of 
the FFT. Analog correlators can be used, but system inaccuracies severely 
limit the fields of application. In this section, we address the basics in ap
plying the FFT to time-difference-of-arrival measurements. 

Problem Definition 

The FFT is applied to time-difference-of-arrival measurements by im
plementing classical correlation techniques. From Chapter 4, the correlation 
function for a waveform St(l) that arrives at a sensor at some time to and a 
replica of that same waveform, S2(t), arriving at a different sensor at some 
later time to + T is given by 

(14.29) 
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By definition, the correlation function measures the degree of match or cor
relation between a waveform and a shifted replica of the waveform. Hence, 
Eq. (14.29) reaches a maximum for that shift 'T that corresponds to the time 
difference of arrival of the waveforms at the sensors. We determine the value 
Of'Tmax at the correlation peak by using the FFT to compute the discrete 
correlation theorem discussed in Sec. 7.4. 

FFT Time-Difference-of-Arrival Measurement 

The basic computational procedure for FFT application to the time
difference-of-arrival measurement is illustrated in Fig. 14.26. As shown, 
waveforms s \ (t) and its replica S2(t) arrive at spacially separated sensors at 
time difference 'T. Each sensor output is sampled by an analog-to-digital 
converter and input to an FFT. Recall from Chapter 7 that zeros must be 
appended to the sampled waveforms to avoid end effects. From the FFT 
outputs, we form the correlation theorem product S \(f)si(f), where 
Si(f) is the complex conjugate of S2(f). The resulting complex function is 
termed the cross spectrum. The cross spectrum can be viewed as an am
plitude and phase spectrum, as shown in Fig. 14.26. The inverse FFT of the 
cross spectrum is the desired cross-correlation function. The cross-corre
lation function peaks at the value of 'T max corresponding to the desired time
difference-of-arrival measurement. 

Although the procedure described appears straightforward, there is one 
shortcoming. Examine the output cross-correlation in terms of an accurate 
determination ofthe peak value. The time resolution ofthe cross-correlation 
function is determined by the sampling interval of the waveforms s \ (t) and 
S2(t). If the sampling interval is Ts, then the cross-correlation time resolution 
is T s, which is not sufficiently accurate for practical applications. As a result, 
we must interpolate between the samples of the cross-correlation function 
to determine 'Tmax. As long as the Nyquist sampling rate for the input signals 
is observed, then, theoretically, the continuous cross-correlation waveform 
can be reconstructed. 

FFT Phase-Domain Time-Difference-of-Arrival 
Measurement 

An alternate approach to measure the time difference of arrival is to 
compute the slope of the phase-domain function. Note from Fig. 14.26 that 
the phase slope is equal to 2'lT'l"max. This follows from the time-shifting theo
rem (Sec. 3.4). Hence, rather than implementing an interpolation procedure 
to accurately estimate 'Tmax , we simply estimate the slope of the phase 
spectrum. 

Several alternatives for slope estimation should be explored based on 
the specifics of the problem. A weighted least-square approach based on 
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cross-spectrum amplitude (shown in Fig. 14.26) appears the most practical. 
This procedure allows one to give the most weight to the frequency resolution 
cells where the signal-to-noise ratio is greatest. In fact, a procedure to elimi
nate from the slope estimation those data from low cross spectrum amplitUde 
cells is probably most advantageous. One can also average consecutive 
phase-spectrum data in order to increase the signal-to-noise ratio. 

An FFT time-difference-of-arrival system can be calibrated, as dis
cussed in the previous section. Note that if the input waveforms have no 
delay between them, then the cross-phase spectrum should be zero. Any 
deviations from zero are due to system phase-differential errors. This cal
ibration data can be stored and the phase-spectrum data can be appropriately 
corrected for each measurement. 

14.9 FFT SYSTEM SIMULATION 

Accurate prediction of system performance often requires the development 
of simulation techniques to verify the design criteria. Radar, communica
tions, sonar, and imaging system designers use the FFT for digital simulation 
analysis to reduce hardware design cost. 

The general class of systems for which FFT simulation is applicable 
are those that can be characterized by open-loop transfer functions. This 
follows because the FFT requires that a block of data is processed simul
taneously. Systems whose nonlinearities are characterized in the time do
main can also be easily simulated. FFT simulation is appealing to a system's 
analyst because of the simplicity of designing the simulation. As we saw in 
Chapter 12, either a time- or frequency-domain specification of system func
tions can be implemented by the FFT. This implies that equations familiar 
to the system's hardware engineer are used directly in the simulation. 

To explore the potential of FFT simulation techniques, we describe in 
this section the application of the FFT to the prediction of radar performance 
in a specified environment. This problem is in general nontractable by con
ventional analysis techniques and is characteristic of classical background 
clutter, electronic countermeasure (ECM) and electronic counter-counter
measure (ECCM) problems. The simulation can be extended to more so
phisticated radar signal-processing techniques, including matched receivers, 
doppler filtering, optimum signal design, chirp waveforms, and phased 
arrays. 

FFT Radar·System Simulation 

The block diagram of a simplified radar receiver is shown in Fig. 14.27. 
The mixer and the local oscillator convert the radio-frequency (RF) signal 
to an intermediate frequency (IF), where the converted signal is amplified 
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IFAMPUFIER 

Figure 14.27 Block diagram of a simplified radar receiver. 

and filtered. The (RF) pulse modulation is extracted by the detector and 
amplified by the video amplifier. Target range information is extracted by 
the video processor. The key to radar performance in a clutter or jamming 
environment is generally determined by the capability of the video processor. 

The classical radar-analysis problem is to determine the degradation 
of range extraction by the video processor as a function of input-noise char
acteristics. System degradation is normally measured in terms of probability 
of detection and probability offalse alarm. If the received noise is Gaussian, 
then closed-form solutions for system performance can be obtained. How
ever, it is necessary to resort to a simulation in order to evaluate system 
degradation if the noise is an interfering signal with specified modulation 
characteristics. A digital FFT simulation of the block diagram illustrated in 
Fig. 14.27 is a cost-effective method for evaluating system performance in 
these cases. 

Figure 14.28 illustrates the radar model chosen for simulation and the 
corresponding FFT simulation block diagram. The received waveform is 
simulated by generating samples of the additive combination of the pulsed 
IF waveform and the interfering signal. Both the IF and video amplifiers 
(filters) are simulated by sampling their respective transfer functions in the 
frequency domain, as discussed in Chapter 12. 

The IF amplifier is assumed to be a cascade combination of Butterworth 
filters whose center and cutoff frequencies are chosen to enhance the rolloff 

IFAMPUFIER 

SAMPLED 
IF FllJER 

TRANSFER FUNCTION 

SAMPLED 
LOW PASS 

TRANSFER FUNCTION 

Figure 14.28 FFT Simulation model of a radar receiver. 
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of the skirts of the resulting transfer function. Conventional analog filter 
design equations are sampled in the frequency domain. Filtering at IF is 
accomplished by forming the product of the FFT of the sampled input and 
the sampled filter function; this product is then inversely transformed to 
obtain the time-domain output of the filter. 

Nonlinear square-law detection is simulated by squaring the IF time
domain waveform. Simulation of the video amplifier (filter) is accomplished 
in the same manner as the lF amplifier. The video amplifier is assumed to 
be a three-pole Butterworth low-pass filter that is simulated by frequency
domain sampling. The resulting output video waveform is representative of 
the receiver performance in the presence of the simulated interference. 

FFT Radar-System Simulation Results 

To illustrate the waveforms that can be obtained by this simulation 
method, Gaussian noise is added to the input waveform shown in Fig. 14.29. 
An estimate of the power spectrum of the input waveform obtained by com
putation of a Hanning weighted FFT is shown in Fig. 14.30(a). A similarly 
computed IF output power spectrum is shown in Fig. 14.30(b). The detected 
video output is illustrated in Fig. 14.30(c). If a sequence of system video 
outputs is generated by the simulation, each with independent noise samples, 
statistical parameters such as probability of detection, probability of false 
alarm, error rate, etc. can be evaluated as a function of the characteristics 
of the interfering signal and the parameters of the video processor. 

.2 .4 1.2 1.4 1.6 1.8 2.0 

TI ME (IlSEC) 

·1 

Figure 14.29 FFT radar-system simulation input waveform. 
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Communication-System Simulation 

363 

FFT simulation techniques are also readily adaptable to communica
tion systems. In digital data systems, a common problem encountered is the 
estimation of intersymbol intererence as a function of noise level, data rate, 
transmitter bandwidth, transmitter filter roll off characteristics, and system 
synchronization parameters. Analogous to the radar problem, an FFT simu
lation can be implemented to evaluate the probability of correctly decoding 
a transmitted message as a function of each parameter degrading system 
performance. An FFT simulation approach to communication-system anal
ysis allows one to include real-world constraints that are normally unwieldly 
in closed-form analysis. 
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14.10 FFT POWER-SPECTRUM ANALYSIS 

The measurement of power spectra is a difficult and often misunderstood 
topic. Because the FFT readily yields frequency and amplitude information, 
many investigators proceed to estimate the magnitude of a sampled wave
form by applying the FFT.lfthe waveform is periodic or deterministic, then 
a correct interpretation of FFT results is likely. However, when waveforms 
are random processes, it is necessary to develop a statistical approach to 
amplitude estimation. We describe in this section the fundamentals of power
spectrum estimation, introduce the terminology, and provide FFT proce
dures for computing the power spectrum. As is shown, the FFT computa
tional procedures are straightforward; however, the statistical interpretation 
of the results is difficult. A detailed development of statistical estimation is 
beyond the scope of this discussion. 

Correlation Spectrum Estimation 

Let xCt) be a random function of time. In constrast to a deterministic 
function, future values of a random function cannot be predicted exactly. 
However, it is possible that the value of the random function at time t1 

influences the value at time t2' We express this statistical characteristic by 
means of the autocorrelation function, which is given by 

I Ll2 

<1>(1') = 1~ IlL -L/2 xCt)[x(t + 1')] dt (14.30) 

The power-spectral-density function <I>(f) and the autocorrelation function 
<1>(1') are defined as a Fourier transform pair: 

<1>(1') = I:oo <I>(f)e j271'fT df ~ <I>(f) = I:oc <1>(1')e -j271'fT d1' (14.31) 

Function <I>(f) is called by many terms including the power-spectrum, the 
power-density, the spectral-density, and the power-spectral-density func
tion. We use these terms interchangeably, as does the literature. Note that 
if we set l' = 0 in Eqs. (14.30) and (14.31), we obtain 

I:= <I>(f) df = <1>(0) = I_oo"" x 2 (t) dt (14.32) 

The right-hand of Eq. (14.32) is the total energy or power of the random 
function (see Sec. 2.4). Because the integral of <I>(f) is equal to the total 
signal power, then the terminology power, or spectral density, has been 
adopted. 

If the autocorrelation function is known, then the calculation of the 
power spectrum is determined directly from the Fourier transform. How
ever, the general case is that we must determine <1>(1'). Equation (14.30) is 
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appealing but the relationship requires a knowledge of x(t) for - 00 < t < 00. 

In practice, x(t) is known only over a finite interval, and we must estimate 
<!>(-r) based on only this finite duration of data. The estimator for <!>(-r) that 
is generally used is 

A 1 (L-ITI 
<!>(-r) = L _ I T I Jo x(t)x[(t + I T I )] dt I T 1< L (14.33) 

where x(t) is assumed to be known only over the finite duration L. 
Because <!>(-r) is not defined for T > L, then, as shown in Fig. 14.31, 

we multiply Eq. (14.33) by a window function that is nonzero where Eq. 
(14.33) is defined and is zero elsewhere. Function W(T) is termed a lagged 
window because we can visually describe our observation of <!>(T) as looking 

Undefined Undefined 

-L L T 

(a) 

W(T) 

-L L T 

(b) 

-L L T 

(c) 

Figure 14.31 Graphical illustration of the window function used in correlation
spectrum estimation. 
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through the window WeT). The modified autocorrelation function W(T)<!>(T) 
exists for all T and hence its Fourier transform exists. We can then obtain 
an estimate of the power spectrum using the relationship of Eq. (14.31): 

(14.34) 

where WeT) = 1 for I T I < L and is zero elsewhere. <l>c(f) is normally defined 
as the correlation or lagged-product estimator for the power spectrum. This 
approach to spectral analysis is commonly referred to in the literature as 
the Blackman-Tukey procedure [27]. 

Periodogram Power-Spectrum Estimation 

An alternate approach to the correlation spectrum procedure is to es
timate the spectrum directly by means of the periodogram. Let 

<l>p(f) = (1IL) 1 LL x(t)e-J27Tfldt 12 (14.35) 

Subscript p indicates that the power-spectrum estimate is obtained by means 
of the periodogram. Because Eq. (14.35) is in the form of a Fourier transform 
over a finite interval, we can then use the FFT to compute the spectrum 
estimate. 

Although the periodogram and the correlation spectrum-estimation 
procedures appear quite different, they are theoretically equivalent under 
certain conditions. It can be shown (Ref. [28]) that 

JLl2 

<l> (f) = (1 - IT IIL)<!>(T)e-J27TfT dT 
p -L/2 

(14.36) 

The inverse Fourier transform of Eq. (14.36) yields 

<!>p(T) = (1 - IT IIL)<!>(T) I T I < L (14.37) 

Hence, if we modify the lagged-product spectrum-estimation technique by 
simply using a triangular (Bartlett) window rather than a rectangular lag 
window, then the two procedures are equivalent. Using the convolution 
theorem, we can rewrite Eq. (14.36) as 

(14.38) 

where WB(f) is the Bartlett frequency-domain window function. Hence, the 
periodogram spectrum estimate is equal to the lagged-product spectrum es
timate convolved with the Bartlett window frequency function. 

Correlation spectrum estimation theoretically employs the rectangular 
lag window, and the periodogram spectrum-estimation procedure can be 
interpreted as employing the triangular lag window. In practice, we employ 
neither of these two windows, as will now be described. 
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Spectral Windows 

In the previous discussion, we showed that the correlation and peri
odogram estimation procedures can both be interpreted as using frequency
domain window or weighting functions. In estimation problems, one strives 
to achieve an estimator whose mean value (the average of multiple estimates) 
is the parameter being estimated. It can be shown (Ref. [28]) that the mean 
value of both the correlation and periodogram estimation procedures is the 
true spectrum <p(f) convolved with the frequency-domain window function: 

(14.39) 

Hence, the mean value of the power-spectrum estimate equals the true spec
trum only if the frequency-domain window function is an impulse function 
(i.e., the data record length is infinite in duration). If the mean ofthe estimate 
is not equal to the true value, then we say that the estimate is biased. 

From our previous discussion of FFT data-weighting functions (Sec. 
9.2), we know that detail is lost if we smooth (convolve) with a broad spectral 
(frequency-domain) window. Said differently, amplitude values adjacent to 
a true peak in the spectrum become biased due to the smoothing that occurs 
in the convolution operation with the spectral frequency window function. 
Hence, one could conclude that a narrow spectral window is desirable. How
ever, this is not a valid conclusion because the more narrow the spectral 
window, the larger the variance of the estimate (Refs. [27] and [28]). This 
statement follows intuitively because the variance of the estimate of several 
random variables that are summed has a smaller variance than that of a 
single random variable. Hence, to reduce the variance of the estimate, we 
must broaden the spectral window that averages or smoothes adjacent es
timates due to the convolution operation of Eq. (14.39). 

The normal method for characterizing the width of the frequency-do
main window is to define its bandwidth. In spectral analysis, bandwidth is 
defined as 

Bandwidth (BW) = 1/ {J:oo W2(f) df} (14.40) 

Spectral window bandwidth determines the resolution of the spectrum es
timate as well as the variance of the estimate. A compromise between small 
variance and high fidelity (resolution) is the crux of the power-spectrum 
estimation problem. We follow the conclusion of Jenkins [28] that any a 
priori optimality criteria that sets too rigid a mathematical formulation for 
this trade-off is not practical. A more useful and flexible approach is to use 
an experimental spectrum-estimation approach that allows one to learn the 
appropriate bandwidth of the spectral window from the data. After defining 
a FFT procedure for computing the power spectrum, we develop such an 
experimental technique. 
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Smoothed Periodogram FFT Spectrum Estimation 

The spectral window for the periodogram is of the form {[sin(f)]/f}2. 
This follows from the developments leading to Eq. (14.38), where it was 
shown that the periodogram spectral estimate was equivalent to a correlation 
estimate using the triangular or Bartlett window. Recall from Sec. 9.2 that 
the Bartlett frequency window has relatively high side lobes with respect to 
other window functions. However, Jones [29] has shown that very good 
periodogram spectral estimates can be obtained from the ([sin(f)]1 f}2 spectral 
window by averaging (smoothing) adjacent spectrum estimates. The 
smoothed periodogram (sp) estimate is given by 

(14.41) 

where W D(f) is the rectangular frequency window first suggested by Daniel 
[28]; 

- f3f 0/2 =5 f =5 f3f 0/2 (14.42) 
= 0 otherwise 

Note that parameter f3fo specifies the frequency range over which the peri
odogram is averaged (fo = lIL). Hence, the smoothed periodogram window 
is that obtained by averaging the appropriate number of {[sin(f)]/f}2 spectral 
windows that are spaced at intervals of fo = 1IL. We show in Fig. 14.32 
the ([sin(f)]/f}2 periodogram spectral window and the smoothed periodogram 
spectral window for f3 = 10. That is, we have averaged 10 adjacent periodo
gram windows. A comparison of the smoothed periodogram spectral window 
with the Hanning and Parzen windows is shown in Fig. 14.33 under the 
constraint of equal bandwidths. Spectral windows with equal bandwidths, 

W.(I) 
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-5 
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o 

(b) 

5 
L 

f3 = 10 

Figure 14.32 (a) Periodogram spectral window, and (b) the smoothed periodo
gram spectral window for 13 = 10. 
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Figure 14.33 Comparison of smoothed periodogram, Hanning, and Parzen spec
tral windows under the equal-bandwidth constraint. 

as determined from Eq. (14.43), produce a spectrum estimate with equal 
variances. The bandwidth or resolution of the smoothed periodogram is 
given by ~/L. We show in Fig. 14.34 a smoothed periodogram computing 
procedure using the FFT. As shown, we average the FFT computed esti
mates in groups of ~, except that the first group contains only ~/2 terms. 

Experimental Procedure for FFT Spectral Analysis 

A practical procedure for power-spectrum estimation is to progres
sively reduce the spectral analysis bandwidth. This approach allows one to 
learn significant features of the spectrum during the course of the analysis. 
The initial choice of a wide bandwidth masks fine detail in the spectrum. 
However, a wide bandwidth produces a stable (low-variance) estimate. If 
we allow the analysis bandwidth to become smaller, then additional detail 
can be explored. The practicality ofthis approach is limited by interpretation 
problems that result from the instability (large variance) of the estimates. 

To illustrate the concept of spectral bandwidth closing, we generate 
samples of a random process (T = 0.1 s) with a power spectrum that for 
the present we assume is unknown. Our objective is to deduce from the data 
the true form of the spectrum. 

FFT spectrum estimates according to the procedure of Fig. 14.34 are 
computed in Fig. 14.35 for N = 64 and BW = 0.8,0.4, and 0.2 Hz. We note 
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1. Sample x(t) for 0 :S t:S L: 

x(kT) = x(t) IkT k = 0, 1, ... , N - 1 

2. Compute the FFT of x(kT): 

N-1 
X(nfo) = ~ x(kt)e- j2-rrnkiN 

k=O 

fo = 1/NT 

3. Compute the periodogram of X(nfo): 

cl>p(nfo) = (TI N){Re2[X(nfo) + Im2[X(nfo)]} 

4. Compute the smoothed periodogram: 

1'1/2-1 

cl>sp(O) = 2/[3 ~ cl>p(nfo) 
n=O 

313/2-1 

cl>sp([3fo/2) = 1/[3 ~ cl>p(nfo) 
n=13/2 

51312-1 

cl>sp(3[3fo/2) = 1/[3 ~ cl>p(nfo) 
n=31'1/2 

Figure 14.34 FFT computational procedure for smoothed periodogram spectrum 
estimation. 
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in Fig. 14.35 that as we close the bandwidth from 0.8 to 0.4 Hz, the estimated 
spectrum contains several spectrum peaks. As we further close the band
width to 0.2 Hz, these peaks become even more pronounced. Before reach
ing a conclusion that these peaks are real, it is necessary to establish that 
the peaks are not the result of variability or instability of our estimate. We 
use the concept of confidence intervals to make this assessment. 

We also show in Fig. 14.35 the 90-percent confidence limits (amplitude 
range) for the estimate produced for each bandwidth selection. Because a 
log amplitude scale is used, then the confidence interval is valid for any 
frequency estimate of the power spectrum. The confidence limit, or ampli
tude range, is interpreted in that the true power spectrum for any frequency 
falls within the noted interval with probability 0.9. Hence, the confidence 
limit is a measure of the statistical variance of the estimate if we assume 
that there is no bias in the spectral estimate. For wide spectral bandwidth, 
we know that bias is possible. To determine the confidence limit for each 
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Figure 14.35 Spectrum estimate for N = 64. 

bandwidth, we use the graphs shown in Fig. 14.36. To use the graph, we 
must compute the parameter 'T] = 2L(BW), where L is the data record length, 
L = NT. Parameter 'T] is referred to as the number of degrees of freedom 
and can be interpreted as the number of squared random variables that have 
been summed. Intuitively, we expect the variance of summed random vari
ables to decrease as the number of variables summed is increased. Hence, 
the larger the number of degrees of freedom, the smaller the variance of the 
spectrum estimate. 
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For the spectrum estimate determined with a bandwidth of 0.8 Hz, we 
compute 1] = (2)(0.1)(64)(0.8) = 10.24. From Fig. 14.36, we obtain the values 
2.2 and 0.58 from the upper-limit and lower-limit graphs, respectively. These 
limits are plotted as a vertical line, as shown in Fig. 14.35. Because the 
confidence interval is valid for any frequency estimate of the power spec
trum, we slide this vertical line along our estimate to the peak value of 0.4 
Hz in Fig. 14.36. We conclude that the 90-percent confidence amplitude 
range is so large with respect to the peak variation in our spectrum estimate 
that we cannot conclude if the results are statistically significant. To ensure 
that the peak is real, we must reduce the amplitude range of the confidence 
interval. 

To improve the confidence of our estimate, we increase the number 
of data points N, which increases 1], the number of degrees of freedom of 
the estimate. In Fig. 14.37, we show spectrum estimates for N = 512 and 
BW = 0.8, 0.4, and 0.2 Hz. Note that the spectrum peaks that were observed 
previously are significantly different. This gives evidence that the previously 
defined peaks were due to statistical instability. Observe in the lower-fre
quency region that the spectral estimate decreases in magnitude as the spec
tral bandwidth is decreased. This observation leads one to the conclusion 
that there is estimation bias for the wider spectral windows. This same effect 
is observed in the upper-frequency region (0.8 to 1.2 Hz). In the frequency 
region of 0.3 to 0.6 Hz, the opposite effect occurs and the amplitude increases 
as the spectral window bandwidth is reduced. This trend gives evidence that 
there may be a peak in this region. However, we note that the range of the 
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Figure 14.37 Spectrum estimate for N = 512. 

90-percent confidence limit is still larger than the excursion of the peak we 
are trying to validate. 

In Fig. 14.38, we repeat the spectrum estimates for the case N = 2048. 
We observe a definitive trend toward a peak in the spectrum at approxi
mately 0.5 Hz. The spectrum estimate for BW = 0.4 is relatively smooth, 
which gives credibility to the estimated peak. The estimate for BW = 0.2 
Hz is questionable because of noticeable variability. Note that for BW = 
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Figure 14.38 Spectrum estimate for N = 2048. 

0.4 and 0.2 Hz, there is essentially no change in the estimate in the range 
0.0 to 0.2 Hz and only a small change in the range 0.3 to 0.6 Hz. We conclude 
that the spectral estimate (BW = 0.4 Hz) has minimum bias in the lower
frequency range. The same arguments and conclusion can be reached for 
the upper-frequency region. This estimate also has a reasonably small con
fidence interval. Recall that the confidence interval assumes that there is no 
bias in the estimate. Therefore, we cannot conclude that the estimate for 
BW = 0.8 Hz is the best estimate. Based on these observations, we conclude 
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that the spectrum estimate for BW = 0.4 Hz yields a true peak in the spec
trum at approximately 0.5 Hz. In Fig. 14.38, we also show the true spectrum. 
We have estimated reasonably well the true shape of the spectrum. 

Summary 

In the literature, there are mUltiple methods described for computing 
the power spectrum. The Blackman-Tukey procedure is the most popular, 
but there is no particular reason other than tradition for its use. Spectrum
estimation procedures based on the periodogram yield results that are as 
good or better than other methods and is computationally more efficient. 
As discussed, the application of the FFT to spectrum analysis is complex 
and is primarily a statistical estimation problem. As long as we can continue 
to increase the data record length, then estimates with reduced variability 
can be obtained. However the practical problem normally encountered is 
one of insufficient data and the power-spectrum analysis problem quickly 
enters the realm of art-science. With the FFT, it is quite easy to produce 
spectrum estimates and for this reason the reader is cautioned to use this 
section as only an introduction to spectrum estimation. The interpretation 
of these FFT results is the key to the power-spectrum estimation problem. 
Readers should beware that there is considerable discussion in the literature 
concerning the selection of optimal window functions. In most practical 
spectrum-analysis applications, window selection is of minor importance 
compared to the problem of spectrum interpretation. The literature also de
scribes the use of data-weighting functions in the periodogram computation 
of the power spectrum. This approach is used to reduce the side lobes of 
the Bartlett spectral window that, as discussed, is inherent in the compu
tation of the periodogram. From a statistical viewpoint, this approach is not 
sound unless the random background noise is of minor importance to the 
deterministic signal being evaluated. 

Welch [32] describes a spectrum-analysis procedure where the data is 
sectioned into subintervals and a periodogram is computed for each section 
of data. These periodograms are then averaged to improve the variability 
of the spectrum estimate for each frequency. This computation approach is 
limited by the leakage properties of the Bartlett spectral window and data 
windows are generally used to improve the window characteristics. Addi
tional spectrum analysis applications of the FFT are given in Refs. [30], [31], 
and [33]. 

14.11 FFT BEAMFORMING 

The conventional delay-and-sum technique for array beamforming in radar, 
communications, sonar, and seismic applications is illustrated in Fig. 14.39. 
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M-l 

v(t) 0 L Xm(t-mT) 
m=Q 

Figure 14.39 Conventional delay-and-sum technique for array beamforming. 

As shown, a plane wavefront arriving at an angle 6 to a sensor array with 
spacing d between elements is delayed by an amount 'T between each adjacent 
sensor pair. If we are to recombine, in the proper phase, the output of each 
sensor, then we must compensate for these time delays. The relationship 
between the sensor spacing d and the delay 'T is given by 

'T = (die) cos(6) (14.43) 

where e is the velocity of propagation of the wavefront. To recombine the 
sensor outputs for an incoming wavefront at an angle 6, we must delay the 
output of sensor m by 

m'T = (mdle) cos(6) (14.44) 

where the wavefront angle 6 and the sensor m are defined in Fig. 14.39. 
Signal recombination, or spatial array beamforming, is then achieved by the 
coherent (in-phase) addition of the delayed sensor outputs: 

M-\ 

y(t) = ~ xm(t - m'T) (14.45) 
m=O 

where we have assumed M sensors. 
Beamforming by means of delay lines becomes quite cumbersome from 

a hardware viewpoint as the number of array sensors increase. If digital 
delay lines are used, the sensor outputs must be sampled at a rate much 
higher than the Nyquist rate to minimize side-lobe degradation in narrow
band linear-array beam patterns. However, with the FFT, it is possible to 
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perform the equivalent of a time delay in the frequency domain. We develop 
in this section the procedures for applying the FFT to spatial-array beam
forming. Our approach follows that of Refs. [19] and [34]. 

Frequency-Domain Single-Beam Relationships 

Recall from the time-shifting property (Sec. 3.5) that a shift in time by 
an amount T is equivalent to mUltiplication by e -j2-rrfT in the frequency do
main. Equation (14.45) can then be written as 

M-l M-l 

y(t) = L xm(t - mT) ~ Y(f) = L Xm(f)e -j2-rrfmT (14.46) 
m=O m=O 

The term on the right-hand side of Eq. (14.46) is the appropriate fre
quency-domain relationship for combining the M sensor outputs with the 
appropriate delays. Hence, we take the Fourier transform of the output for 
each sensor, multiply by the complex exponential e-j2-rrfmT, and add the 
results according to the right-hand side of Eq. (14.46). The inverse Fourier 
transform yields y(t). 

Note that Eq. (14.46) is valid only for one specific value of the param
eter T, that is, the array has been pointed in the direction 6 defined in Eq. 
(14.43). 

Frequency-Domain Multiple-Beam Relationships 

Let us assume that we desire to simultaneously implement the correct 
delays in order to combine the M sensor outputs for various azimuth angles 
6;. In particular, we must compute the frequency-domain summation of Eq. 
(14.46) for each value T; associated with a beam direction 6;. To form M 
azimuth beams, we define increments of T; as 

T; = i(d/M) i = 0, 1, ... , M - 1 (14.47) 

where d is the distance between sensors and M is the number of sensors. 
The beam, or azimuth, angle 6; for each delay value T; can be determined 
from Eq. (14.43): 

6; = cOS-1(CT;/d) = cos-1(iC/M) 

The right-hand side of Eq. (14.46) then becomes 
M-l 

Y;(f) = L X m(f)e- j2-rrf(m;dIM) 

m=O 

(14.48) 

(14.49) 

Equation (14.49) requires that we compute the Fourier transforms of 
each sensor output, multiply the transform for each sensor by the exponential 
e-j2-rrf(m;dIM) for each desired beam direction 6;, and then perform the in-
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dicated summation. The inverse Fourier transform yields the time-domain 
function associated with a beam direction 6i . The computation of Xm(f) and 
Yi(f) are easily formulated in terms of a two-dimensional FFT. 

Two-Dimensional FFT Array Processing 

Assume that we sample each sensor output xm(t) with sample interval 
T to form xm(kt), where k = 0, 1, ... , N - 1. Then we use the FFT to 
compute the frequency function for each sensor m: 

N-I 
Xm(nfo) = L xm(kt)e -j2-rr(kD(nfo) 

k=O 

n =0,1, .. . ,N-l 
(14.50) 

fo = liNT 

If we replace the continuous variable f in Eq. (14.49) with the discrete 
frequencies nfo obtained by substituting Eq. (14.50), then Eq. (14.49) 
becomes 

Y(i,nfo) 
M-I{N-I } L L x m(kt)e- j2-rr(kD(nfo) e-j2-rrf (midIM) 
m=O k=O 

(14.51) 

The two-dimensional FFT relationship of Eq. (14.51) is a function of the 
beam number i and frequency nf o. The two-dimensional inverse FFT yields 
the appropriate time-domain waveform associated with each beam pointed 
in the direction 6i • If the number of sensors is large, then digital beamforming 
using the FFT is attractive. 

Summary 

The preceding derivation has been for a linear array of M elements. 
Our approach can be extended to cases of circular, cylindrical, and spherical 
arrays. Beam-pattern side lobes can be minimized by using a weighting func
tion. It is also possible to design adaptive methods in which each array output 
is weighted from a calculated expression based on actual received data. 

PROBLEMS 

14.1 Consider the band-pass waveforms illustrated in Fig. 14.40. Analogous to Fig. 
14.3, graphically and analytically develop the range of acceptable sampling 
frequencies that produce nonoverlapped aliased images of the band-pass spec
trum. What do you conclude concerning spectrum inversion? 

14.2 Assume a band-pass waveform with a frequency spectrum as shown in Fig. 
14.41. Show graphically a sampling frequency that results in down sampling 
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Figure 14.40 Band-pass waveforms for Prob. 14.1. 

H(t) 
8T 0 210 

710 

Figure 14.41 Band-pass waveform for 
Prob. 14.2. 

to a center frequency of fo. Are there additional sampling frequencies that 
produce the same result? 

14.3 For the example frequency function shown in Fig. 14.3(c), choose a sampling 
frequency that down samples the spectrum to a zero center frequency. Show 
graphically your results. What are your conclusions? Hint: Consider double 
side-band amplitude modulation. 

14.4 Assume that the frequency function shown in Fig. 14.42 results from a single 
side-band modulation of a voice signal that inverts the voice spectrum as 
shown. Develop graphically a down-sampling procedure that simultaneously 
demodulates the signal and inverts the spectrum. Your results should be iden
tical to those of Fig. 13. 14(e). 

-15kHz 

l IH(I)' 

1 I 

BT 0 4kHz 

15kHz 
Figure 14.42 Frequency function for 
Prob. 14.4. 

14.5 Repeat the graphical and analytical developments of Ex. 14.2 if h(t) is given 
as 

h(t) cos[2'lT(5fo + f o/2)1] - Y2 sin[2'lT(5fo + f o/2)1] 
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14.6 Assume a bandpass signal has a center frequency of 16fo and a bandwidth BT 
= 3fo. If quadrature sampling is used, what is the minimum sample rate for 
the in-phase and quadrature channels? If the signal is to be reconstructed with 
a center frequency of 5fo, determine the sample interpolation requirements. 

14.7 Assume that the frequency functions illustrated in Fig. 14.43 are narrow-band 
signals to be sampled by quadrature-sampling techniques. Use a graphical 
analysis procedure analogous to Figs. 14.4 and 14.5 to develop the Fourier 
transform of the in-phase and quadrature functions resulting from quadrature 
sampling. Discuss for each case the required sampling rate to prevent aliasing. 
Show by a graphical analysis analogous to Figs. 14.7 and 14.8 that no infor
mation is lost even though quadrature sampling results in overlapped fre
quency functions. Also comment on the increase in sample rate that is required 
for each case if the sampled waveforms are recombined at a center frequency 
of 2fo. 

, 
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J \ ,... \ 
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,1 
, I 
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/ I 
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, I 

" 
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-, 

H(I)- REAL 

10 310 510 

(b) 

Figure 14.43 Frequency functions for Prob. 14.7. 

710 I 

14.8 Assume that extremely fine resolution is desired in the narrow frequency band 
B z shown in Fig. 14.44. Also, assume that the desired resolution cannot be 
achieved across the total signal bandwidth due to computer memory limita
tions. Use the concept of frequency translation followed by low-pass filtering 
to develop a procedure for increased FFT resolution (Zoom FFT, Ref. [24]). 

Figure 14.44 Frequency function for 
Prob. 14.8. 

14.9 Assume that a single frequency sinusoid is buried in noise with a SIN = -20 
dB. If a SIN = + 10 dB is required to clearly establish the presence of the 
signal, determine the appropriate FFT parameters. 
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14.10 A narrow-band signal of bandwidth BWs is buried in wide-band noise of band
width BWn. Determine the maximum processing gain which can be achieved 
by FFT signal processing. 

14.11 Assume that hardware limits FFT processing to a size N = 512. If a single 
frequency sinusoid is buried in noise with a SIN = -35 dB, determine the 
number of successive FFTs which must be added to yield a processed signal
to-noise ratio greater than + 6 dB. 

14.12 Explain how you would process the signal of Prob. 14.11 if SIN = -55 dB 
and the frequency of the sinusoid is known. 

14.13 Use the FFT to implement the block diagram matched filter processor shown 
in Fig. 14.15. Experiment with different waveforms and compute the matched 
filter output. If your waveforms are to be used as a radar, discuss each from 
the perspective of range resolution and probability of detection. 

14.14 Let a received signal sr(t) be given by 

sr(t) = s(t) + a s(t + Tl) 

where 

s(t) = cos(27rfot) 

a = -0.9 

Tl = 0.75 

fo = 1 Hz 

Our objective is to use cepstrum processing to remove the echo a[s(t + Tl)]. 

(a) Compute the cepstrum of s(t) using the FFT. 
(b) Compute the cepstrum of sr(t) using the FFT. 
(c) Implement the block diagram of Fig. 14.17 and compare your results with 

the waveform s(t) computed in part (a). 
14.15 In deconvolution, the inverse filter impulse response is r(t), as determined 

from Eq. (14.13). What is the theoretical result if r(t) and h(t) are convolved? 
What is the result if a Hanning weighting function is employed according to 
Eq. (14.16)? 

14.16 Theoretically, deconvolution can be accomplished with no error. Describe 
several practical limitations to obtaining theoretical results. 

14.17 Develop an approach to design a deconvolution filter for the case where H(f) 
is zero-valued, for example, H(f) = [sin(f)]lf. Hint: Use the Hanning weight
ing function, where the truncation frequency fe is the first zero value of H(f). 
Use a second Hanning weighting function between the first and second zero 
values of H(f). Repeat as necessary to achieve signal restoration. 

14.18 Repeat Ex. 14.3 for the cases a = 4>.. and a = >../2. What do you conclude 
concerning the relationship between parameters a and >... 

14.19 In Fig. 14.24(b), what is the effect of increasing the number of zero-valued 
samples? 

14.20 Using the procedures developed in Sec. 14.6, compute and plot the far-field 
antenna pattern for each of the electric field aperture distributions shown in 
Fig. 14.45. 
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Figure 14.45 Electric field aperture distributions for Prob. 14.20. 

14.21 Refer to Eq. (14.27), which determines the angle of arrival of a waveform. 
For a fixed d, what is the effect of setting A = Ao, 2Ao, 4Ao, ... ? What do 
you conclude concerning the relationship between parameters d and A? 

14.22 Practical implementation of Eq. (14.27) involves measurement of the param
eter <l> in the presence of noise. If a measurement is made in the presence of 
noise, what is the effect of: 
(a) increasing d for a fixed A 
(b) decreasing A for a fixed d 
What do you conclude is the optimum relationship between the parameters d 
and A if noise is considered? 

14.23 Assume that an FFT phase-interferometer direction-finding system is to per
form measurements over the wavelength range Ao to IOAo in the presence of 
noise. In view of Probs. 14.21 and 14.22, propose a system solution which 
will insure accurate phase difference measurement over the wavelength range. 
(Hint: Consider multiple antennas.) 

14.24 Modify Fig. 14.25 so that only FFT cells with a signal-to-noise ratio that ex
ceeds a preset threshold enter into the phase difference computation. 

14.25 In an FFT time-difference-of-arrival system, how does one determine which 
signal, S I (t) or S2(t), is the first to arrive? 

14.26 Prove that the phase slope of the cross-spectrum (Fig. 14.26) is equal to the 
time-difference-of-arrival mUltiplied by 2'1T. 

14.27 A weighted least-squares procedure to estimate the phase slope in Fig. 14.26 
has been suggested. On what parameters should the weights be based? 

14.28 Propose an FFT simulation to evaluate the performance of a radar system 
employing a specially designed transmitted waveform and a matched filter 
signal processor. How does your simulation change if the radar is operating 
in the presence of a known interference Gamming)? 

14.29 Let N = 512, BW = 0.1,0.3, and 0.9 Hz. If T = 0.1 secs, determine the 90% 
and 95% confidence limits for each case. 

14.30 Compute and graph on a log scale the smoothed periodogram spectral window 
for ~ = 5, 10, 20, and 50. Show that the windows are roughly rectangular in 
shape and that the sidelobes falloff at 6 dB per octave. Observe that the initial 
fall-off of the sidelobes is a function of ~. 
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A 

THE IMPULSE FUNCTION: 

A DISTRIBUTION 

The impulse function 8(t) is a very important mathematical tool in continuous 
and discrete Fourier transform analysis. Its usage simplifies many deriva
tions that would otherwise require lengthy, complicated arguments. Even 
though the concept of the impulse function is correctly applied in the solution 
of many problems, the basis or definition of the impulse is normally mathe
matically meaningless. To ensure that the impulse function is well-defined, 
we must interpret the impulse not as a normal function but as a concept in 
the theory of distributions. 

Following the discussions by Papoulis [1, Appendix I] and Gupta [2, 
Chapter 2], we describe a simple but adequate theory of distributions. Based 
on this general theory, we develop those specific properties of the impulse 
function that are necessary to support the developments of Chapter 2. 

IMPULSE FUNCTION DEFINITIONS 

Normally, the impulse function (8-function) is defined as 

8(t - to) = 0 

J:"" 8(t - to) dt = 1 

t ¥ to (A. I) 

(A.2) 

That is, we define the 8-function as having undefined magnitude at the time 
of occurrence and zero elsewhere, with the additional property that the area 
under the function is unity. Obviously, it is very difficult to relate an impulse 

386 
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to a physical signal. However, we can think of an impulse as a pulse wave
form of very large magnitude and infinitely small duration such that the area 
of the pulse is unity. 

We note that with this interpretation, we are, in fact, constructing a 
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Figure A.I Representations of the 8-function. 
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series of functions (i.e., pulses) that progressively increase in amplitude, 
decrease in duration, and have a constant area of unity. This is simply an 
alternate method for defining a 8-function. Consider the pulse waveform 
illustrated in Fig. A.l(a). Note that the area is unity and, hence, we can 
write mathematically the 8-function as 

8(t) = lim f(t, a) (A.3) 
...... 0 

In the same manner, the functions illustrated in Figs. A.l(b) to (d) satisfy 
Eqs. (A. I) and (A.2) and can be used to represent an impulse function. 

The various properties of impulse functions can be determined directly 
from these definitions. However, in a strict mathematical sense, these defi
nitions are meaningless if we view 8(t) as an ordinary function. If the impulse 
function is introduced as a generalized function or distribution, then these 
mathematical problems are eliminated. 

DISTRIBUTION CONCEPTS 

The theory of distributions is vague and, in general, meaningless to the 
applied scientist who is reluctant to accept the description of a physical 
quantity by a concept that is not an ordinary function. However, we can 
argue that the reliance on representation of physical quantities by ordinary 
functions is only a useful idealization and, in fact, is subject to question. To 
be specific, let us consider the example illustrated in Fig. A.2. 

As shown, the physical quantity V is a voltage source. We normally 
assume that the voltage v(t) is a well-defined function of time and that a 
measurement merely reveals its values. But we know in fact that there does 
not exist a voltmeter that can measure exactly v(t). However, we still insist 
on defining the physical quantity V by a well-defined function v(t) even 
though we cannot measure v(t) accurately. The point is that because we 
cannot measure the quantity V exactly, then on what basis do we require 
the voltage source to be represented by a well-defined function v(t)? 

A more meaningful interpretation of the physical quantity V is to define 
it in terms of the effects it produces. To illustrate this interpretation, note 
that in the previous example, the quantity V causes the voltmeter to display 

~ I 
VOLTAGE V(outpUtl 

VOLT-METER I 1 + 11·14121 
SOURCE v(tl I I DISPLAY 

I I 
CAUSE TESTING FUNCTION RESPONSE 

Figure A.2 Physical interpretation of a distribution. 
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or assign a number as a response. For each change in V, another number 
is displayed or assigned as a response. We never measure v(t) but only the 
response; therefore, the source can be specified only by the totality of the 
responses that it causes. It is conceivable that there is not an ordinary func
tion v(t) that represents the voltage parameter V. But because the responses 
or numbers are still valid, then we must assume that there is a source V 
causing them and the only way to characterize the source is by the responses 
or numbers. We now show that these numbers in fact describe V as a 
distribution. 

A distribution, or generalized function, is a process of assigning to an 
arbitrary function <!>(t) a response or number 

R[<!>(t)] (A.4) 

Function <!>(t) is termed a testing function and is continuous, is zero outside 
a finite interval, and has continuous derivatives of all orders. The number 
assigned to the testing function <!>(t) by the distribution g(t) is given by 

J:= g(t)<!>(t) dt = R[<!>(t)] (A.5) 

The left-hand side of Eq. (A.5) has no meaning in the conventional sense of 
integration, but rather is defined by the number R[<!>(t)] assigned by the 
distribution g(t). Let us now cast these mathematical statements in light of 
the previous example. 

With reference to Fig. A.2, we note that if the voltmeter is modeled 
as a linear system, then the output at time to is given by the convolution 
integral 

J:= v(t)h(to - t) dt 

where h(t) is the time-domain response of the measuring instrument. If we 
consider h(t) as a testing function (that is, each particular voltmeter has 
different internal characteristics and as a result yields a different response 
for the same input, we thus say that the meter tests or senses the distribution 
v(t), then the convolution integral takes the form 

J:= v(t)<!>(t,to) dt = R[<!>(t,to)] (A.6) 

Thus, for a fixed input V, the response R is a number depending on the 
system function <!>(t,to). 

If we interpret Eq. (A.6) as a conventional integral and if this integral 
equation is well-defined, then we say that the voltage source is defined by 
the ordinary function v(t). But, as stated previously, it is possible that there 
does not exist an ordinary function satisfying Eq. (A.6). Because the re
sponse R[<!>(t,to)] still exists, we must assume that there is a voltage source 
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V that causes this response and that a method of characterizing the source 
is by means of the distribution of Eq. (A.6). 

The preceding discussion casts the theory of distributions in the form 
of physical measurements for ease of interpretation. Based on the defining 
relationship of Eq. (A.5), we now investigate the properties of a particular 
distribution: the 8-function. 

PROPERTIES OF IMPULSE FUNCTIONS 

The impulse function 8(t) is a distribution assigning to the testing function 
<\>(t) the number <\>(0): 

J:oo 8(t)<\>(t) dt = <\>(0) (A.7) 

It should be repeated that the relationship of Eq. (A.7) has no meaning as 
an integral, but the integral and the function 8(t) are defined by the number 
<\>(0) assigned to the function <\>(t). 

We now describe the useful properties of impulse functions. 

Sifting Property 

The function 8(t - to) is defined by 

J:oo 8(t - to)<\>(t) dt = <\>(to) (A.8) 

This property implies that the 8-function takes on the value of the function 
<\>(t) at the time the 8-function is applied. The term sifting property arises 
in that if we let to continuously vary, we can sift out each value of the function 
<\>(t). This is the most important property of the 8-function. 

Scaling Property 

The distribution 8(at) is defined by 

J:oo 8(at)<\>(t) dt = I! I J:oo 8(t)<\>(~) dt (A.9) 

where the equality results from a change in the independent variable. Thus, 
8(at) is given by 

1 
8(at) = r;l8(t) (A. to) 
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Product of a 8-function by an Ordinary Function 

The product of a 8-function by an ordinary function h(t) is defined by 

J:", [8(t)h(t)]<!>(t) dt = J:", 8(t)[h(t)<!>(t)] dt (A. II) 

If h(t) is continuous at t = to, then 

8(to)h(t) = h(to)8(to) (A.I2) 

In general, the product of two distributions is undefined. 

Convolution Property 

The convolution of two impulse functions is given by 

J:", [J:", 8\ (T)8 2(t - T) dT ] <!>(t) dt 

= J:",8\(T) [J:",82(t - T)<!>(t)dt] dT (A. 13) 

Hence, 

(A.14) 

8-functions as Generalized Limits 

Consider the sequence gn(t) of distributions. If there exists a distri
bution g(t) such that for every test function <!>(t), we have 

~ J:", gn(t)<!>(t) dt = J:", g(t)<!>(t) dt 

then we say that g(t) is the limit of gn(t) 

g(t) = lim g n(t) 
n-+'" 

(A.I5) 

(A.16) 

We can also define a distribution as a generalized limit of a sequence 
f n(t) of ordinary functions. Assume that f n(t) is such that the limit 

~ J:", fn(t)<!>(t) dt 

exists for every test function. This limit then is a number that depends on 
<!>(t) and thus defines a distribution g(t), where 

g(t) = lim f n(t) (A.17) 
n-+'" 
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and the limiting operation is to be interpreted in the sense of Eq. (A.I5). If 
Eq. (A.I7) exists as an ordinary limit, then it defines an equivalent function 
if we assume that we can interchange the order of limit and integration in 
Eq. (A.I5). It is from these arguments that the conventional limiting argu
ments, although awkward, are mathematically correct. 

The 8-function can then be defined as a generalized limit of a sequence 
of ordinary functions satisfying 

(A.I8) 

If Eq. (A.I8) holds, then 

8(t) = lim fn(t) (A. 19) 

Each of these functions illustrated in Fig. A.I satisfy Eq. (A.I8) and define 
the 8-function in the sense of Eq. (A.I9). 

Another functional form of importance that defines the 8-function is 

l:>( ) l' sin at u t = Im--
a-+oo 'ITt 

Using Eq. (A.20), we can prove [Papoulis] that 

(A.20) 

(A.21) 

which is of considerable importance in evaluating particular Fourier 
transforms. 

TWO-DIMENSIONAL IMPULSE FUNCTIONS 

The two-dimensional impulse function 8(x,y) is a distribution assigning to 
the testing function <l>(x,y) the number <l>(0,0): 

(A.22) 

From this definition, the useful properties of two-dimensional impulse func
tions can be derived. In particular, the shifting property, which is key to 
developing the two-dimensional sampling theorem, is as follows: 

(A.23) 
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Two-dimensional: 
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Two-dimensional FFT: 
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