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Abstract Sudden stratospheric warmings (SSWs) are impressive fluid dynamical events in which large
and rapid temperature increases in the winter polar stratosphere (∼10–50 km) are associated with a
complete reversal of the climatological wintertime westerly winds. SSWs are caused by the breaking of
planetary-scale waves that propagate upwards from the troposphere. During an SSW, the polar vortex
breaks down, accompanied by rapid descent and warming of air in polar latitudes, mirrored by ascent and
cooling above the warming. The rapid warming and descent of the polar air column affect tropospheric
weather, shifting jet streams, storm tracks, and the Northern Annular Mode, making cold air outbreaks
over North America and Eurasia more likely. SSWs affect the atmosphere above the stratosphere,
producing widespread effects on atmospheric chemistry, temperatures, winds, neutral (nonionized)
particles and electron densities, and electric fields. These effects span both hemispheres. Given their
crucial role in the whole atmosphere, SSWs are also seen as a key process to analyze in climate change
studies and subseasonal to seasonal prediction. This work reviews the current knowledge on the most
important aspects of SSWs, from the historical background to dynamical processes, modeling, chemistry,
and impact on other atmospheric layers.

Plain Language Summary The stratosphere is the layer of the atmosphere from ∼10 to
50 km, with pressures decreasing to ∼1 hPa (0.1% of surface pressure) at the top. The polar stratosphere
during winter is normally very cold, with strong westerly winds. Roughly every 2 years in the Northern
Hemisphere, the quiescent vortex suddenly warms over a week or two, and the winds slow dramatically,
resulting in easterly winds that are more similar to the summer. These events, known as sudden
stratospheric warmings (SSWs), were discovered in the early 1950s, and today, they are observed in detail
by satellites. After several decades researching SSWs, considerable progress has been made in dynamical
aspects of SSWs, but our understanding of how they affect both surface weather and the upper atmosphere
is incomplete. We observe that variability of the stratospheric circulation (SSWs being an extreme event)
is associated with shifts in the jet stream and the paths of storms, with associated effects on rainfall and
temperatures. The likelihood of cold weather spells and damaging wind storms is also affected. Almost
all SSWs have occurred in the Northern Hemisphere, but there was one spectacular major SSW in 2002 in
the Southern Hemisphere.

1. Introduction
Sudden stratospheric warmings (SSWs) are the most dramatic stratospheric phenomenon. During SSWs,
the normally strong wintertime westerly stratospheric circulation breaks down in a few days and is replaced
by weak easterly winds. This is accompanied by polar warming by up to 50◦C; the effects extend to

REVIEW ARTICLE
10.1029/2020RG000708

Key Points:
• Sudden stratospheric warmings

are dramatic events of the polar
stratosphere that affect the
atmosphere from the surface to the
thermosphere

• Our understanding of sudden
stratospheric warmings has
accelerated recently, particularly
the predictability of surface weather
effects

• More observations, improved
climate models, and big data
methods will address
uncertainties in key aspects of
sudden stratospheric warmings
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Figure 1. 10-hPa 65–90◦N ERA-Interim reanalysis (Dee et al., 2011) zonal-mean temperatures (top) and zonal-mean
zonal wind at 60◦N (bottom) for July 2018 to June 2019 (red lines). An SSW event is seen as the upward spike in
temperature and the reduction to less than 0 m/s in zonal wind (easterlies). The yellow lines signify the daily average
conditions in the stratosphere for that time of year, while the gray shading shows 30th/70th (dark) and 10th/90th
(light) percentiles. Solid black lines show the daily max/min for prior winters 1979–2018. The month ticks indicate the
first day of the month.

Earth's surface as well as through the mesosphere and beyond. The climatology of both the mean flow
and planetary-scale wave amplitudes determines the overall likelihood of SSWs, which occur only during
extended winter and almost exclusively in the Northern Hemisphere (NH).

The variation of insolation with latitude and season drives a strong annual cycle in the stratosphere. Dur-
ing winter, the polar stratosphere is characterized by a strong, westerly, cold polar vortex. The polar vortex
is formed primarily through radiative cooling and is characterized by a band of strong westerly winds at
middle to high latitudes. Typical temperatures are approximately -65◦ to -55◦C (∼208–218 K) in the polar
NH at 10 hPa. Roughly every 2 years, the wintertime vortex is disrupted by planetary-scale waves to such
an extent that this circulation breaks down, with westerly winds becoming weak easterly, and temper-
atures climbing several tens of ◦C—essentially summertime conditions—and occasionally (e.g., January
2009) climbing above 0◦C at some local points. SSWs happen very rapidly, i.e., in a few days, resulting in
one of the most dramatic atmospheric events. Figure 1 illustrates a sudden warming event in 2018–2019,
together with the background climatology and variability of zonal wind, and the average temperature
from 65◦N to 90◦N at 10 hPa. It is important to highlight that both the lowest and highest recorded
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Figure 2. Composite temperature anomalies averaged during Days 0–30
following 36 SSW events during 1958–2015 in JRA-55 data (1,116-day
mean) (Kobayashi et al., 2015). The SSW dates are defined based on the
reversal of the zonal mean zonal wind at 60◦N and 10 hPa, applying the
criterion of Charlton and Polvani (2007). The contour interval is 1 K. The
vertical component of the vectors represent the approximate displacement
(from the climatological basic state) to form the temperature anomalies
shown. Similarly, the horizontal components represent the north-south
movement consistent with pressure regressions (not shown). The vectors
are derived statistically from regressions and are not a dynamical
circulation. Beginning with the basic state, atmospheric movement defined
by the vectors would create temperature and pressure anomalies
approximately equal to the regression values. The calculation was
performed in height coordinates. The pressure labels are approximate. The
lapse-rate tropopause (gray line) is shown for the days in the composite.

temperatures occurred in midwinter. Outside of winter, the stratosphere
is quiescent. The warming event (red curve) was followed, after more
than a month, by anomalously low temperatures and strong winds in
the middle stratosphere. Figure 2 illustrates zonal mean temperature
anomalies averaged over 0–30 days following SSW events. The upper
stratosphere cools, and that there is slight cooling in the midlatitudes
and tropics in compensation for the downward adiabatic warming over
the polar cap. Vectors illustrate the approximate motion consistent with
the temperature anomalies (and pressure anomalies, not shown). See
Baldwin et al. (2019) for details of the calculation. In particular, note the
poleward movement of mass near the surface at high latitudes. This leads
to higher Arctic surface pressure following SSWs.

The effects of SSWs are not only identified in the middle stratosphere.
SSWs last much longer in the lower stratosphere and troposphere than
they do in the upper stratosphere. Figure 3a illustrates a lag composite of
temperature anomalies for SSW events in JRA-55 reanalyses (1958–2015).
Above 30 km, the SSW events end within 2–3 weeks, while in the low-
ermost stratosphere, SSWs last more than 2 months, on average. This is
largely due to the faster radiative time scale in the upper stratosphere.
Pressure anomaly composites (Figure 3b) are similar to temperature,
except that surface effects are clearly visible. The “lumpiness” of the sur-
face signal is due to averaging of a relatively small number of SSWs.
Averaged over 0–60 days, the surface pressure anomaly is 2.1 hPa but is
only 0.74 hPa near the tropopause. This is called “surface amplification”
of the stratospheric signal (Baldwin et al., 2019). The fact that the pressure
anomaly from SSWs is largest at the surface is important. It means that
tropospheric near-surface processes must be reinforcing the stratospheric
signal, raising surface pressure over the polar cap (see section 7).

SSWs are fascinating from a fluid dynamical perspective, and perhaps,
the simplest and most insightful way of viewing the dynamics is maps of

potential vorticity (PV; see section 4) (McIntyre & Palmer, 1983, 1984). Maps of PV in the middle stratosphere
show that planetary-scale wave breaking erodes the polar vortex, sharpening its edge. All SSWs are preceded
by erosion of the vortex, which forms a “surf zone” surrounding the vortex. With fine enough resolution,
one can see filamentation—thin streamers—of PV being stripped away from the vortex and mixed into the
surf zone. This horizontal view complements the zonal mean, which shows mainly rapid temperature rises
as air descends over the polar cap, accompanied by slowing of the zonal winds. Over time, differing mecha-
nisms have been suggested to explain the occurrence of SSWs. Some of the mechanisms are complementary
descriptions from different perspectives, e.g., the zonal-mean perspective of wave, mean-flow interaction,
vs. the horizontal perspective of wave breaking and PV. These issues are discussed in section 4.

An underlying question is whether or not SSWs are dynamically unique extreme events. Given the observed
distributions of temperatures, winds, PV, etc., do SSWs stand out as outliers from the distribution? Or is it
that SSWs simply occupy one tail of the distribution? In the NH, it appears that SSWs occupy one tail of
the distribution (e.g., of wintertime of zonal mean wind at 60◦N, 10 hPa). There is a broad continuum of
warmings, from very minor to major deviations from climatology (Coughlin & Gray, 2009). Thus, defining an
SSW as having occurred or not comes down to defining a fixed threshold (e.g., of absolute stratospheric fields
such as polar wind and/or temperature at some level) or a relative field (e.g., based on the variability of the
polar stratosphere such as the Northern Annular Mode (NAM) or just the variability of the polar temperature
Butler et al., 2015). As summarized in section 3, many different criteria have been proposed for detecting
major SSW events. They often identify the most disruptive events but differ in the quantitative size and
timing of the events. However, the use of different algorithms in studies can lead to inconsistent conclusions
among studies, particularly when using different models or under different climate states (McLandress &
Shepherd, 2009).
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Figure 3. (a) Lag-composite of polar cap (65–90◦N) mean temperature anomalies from 36 SSW events during
1958–2015 in JRA-55 data. The SSWs dates are defined based on the reversal of the zonal mean zonal wind at 60◦N and
10 hPa, applying the criterion of Charlton and Polvani (2007). The contour interval is 1 K. The tropopause (gray line) is
depressed by ∼750 m following the warmings. (b) as in (a) except for polar cap pressure anomalies. Contour interval
0.25 hPa

So far we have mainly focused on the NH, since all major SSWs occurred in the NH prior to 2002. In fact, in
the Southern Hemisphere (SH), there has been only one major SSW (in 2002), and it was indeed spectacular
(Krüger et al., 2005). In terms of daily zonal wind anomalies, the event was approximately eight standard
deviations from the mean—far outside the distribution up to that time. As rare as this event was, in early
September 2019, a similarly anomalous event occurred, though it did not technically qualify as a major SSW
by established criteria (Hendon et al., 2019; Rao et al., 2020). SH warming events are important because they
inhibit strong heterogeneous ozone depletion—essentially preventing the formation of the ozone hole—and
because these events affect jet streams, precipitation (and droughts) especially across Australia (e.g., Lim
et al., 2019; Thompson et al., 2005).

The effects of SSWs are not confined to the polar stratosphere. SSWs affect the circulation in the tropical
stratosphere (e.g., Kodera et al., 22011) and beyond, mixing chemical constituents such as ozone, as indicated
in section 9. The large descent over the polar cap associated with the SSW is balanced by upwelling south of
∼50◦N that extends into the SH (Figure 2). Also visible is ascent (cooling) in the polar upper stratosphere,
that extends into the mesosphere (Körnich & Becker, 2010). SSWs can affect thermospheric chemistry,

BALDWIN ET AL. 4 of 37



Reviews of Geophysics 10.1029/2020RG000708

temperatures, winds, electron densities, and electric fields, across both hemispheres (Chau et al., 2012).
These effects are discussed in section 8.

Some of the most important impacts of SSWs occur in the troposphere, and this is actually one of the SSW
features that has received most of the attention in literature in the last decade—as summarized in section 7.
On average, SSWs are observed to have substantial, long-lasting effects on surface weather and climate,
especially on sea-level pressure (SLP) and the NAM, with associated shifts in the jet streams, storm tracks,
and precipitation (e.g., Baldwin & Dunkerton, 2001). These effects are much larger than can be explained
by dynamical theories such as PV inversion (e.g., Charlton et al., 2005) or the tropospheric response to
stratospheric wave forcing. Tropospheric processes, possibly involving low-level Arctic temperature anoma-
lies, act to amplify the stratospheric signal (Baldwin et al., 2019). This picture of SSW impacts on surface
weather becomes clear when analysis over many SSWs is averaged together. Despite the extensive efforts of
the scientific community, it is still impossible to predict which individual SSW will have a visible downward
impact—meaning that the tropospheric anomalies (e.g., NAM index or pressure) are of the same sign as as
those in the stratosphere. Some SSWs may have a tropospheric impact, but not enough to be obvious.

Given the relevance of SSW events on the whole atmosphere, several efforts have been made in investigat-
ing their predictability. SSWs can be predicted relatively well 10–15 days in advance (Domeisen et al., 2020a;
Karpechko, 2018; Tripathi et al., 2015). Several phenomena outside the polar stratosphere have been iden-
tified, in the observations, as possible modulators of the likelihood of SSWs. Some of them are related to the
tropical stratosphere such as the quasi-biennial oscillation (QBO) and semiannual oscillation (SAO) of the
equatorial stratosphere. Others are related to ocean-atmosphere system such as the El Niño-Southern Oscil-
lation (ENSO) and Madden-Julian Oscillation (MJO), and some others even refer to external phenomena
such as the 11-year solar cycle. With multiple possible influences, and only around 40 SSWs since 1958,
quantifying these relationships is challenging.

In this study, we offer a review of our current understanding of most aspects of SSWs. Most of the previous
reviews of SSWs were published several decades ago and only or mostly focused on the explanation of the
dynamics involved in the occurrence of these events (e.g., Holton, 1980; McIntyre, 1982; Schoeberl, 1978).
Around 1980, the availability of observations in the stratosphere was very limited, mainly because mete-
orological satellites were just starting to operate. This hindered the investigation of SSW aspects such
as the effects on the upper atmosphere. Surface weather effects were not widely recognized until 1999
(e.g., Baldwin & Dunkerton, 1999). Another limitation was that general circulation models (GCMs) in the
1970s and 1980s had low vertical resolution of the stratosphere. The biggest increase in the number models
with well-resolved stratospheres was relatively recent, during the Coupled Model Intercomparison Project
Phase 5 (CMIP5) (Charlton-Perez et al., 2013). Model development has not only allowed the advance in
knowledge on known dynamical and chemistry aspects but also the exploration of new SSW perspectives
such as the benefits of including stratospheric information to improve medium range to subseasonal predic-
tions of surface weather. Research on SSWs has accelerated in very recent decades with a large increase in
the number of publications on this topic. Summaries have been written by O'Neill et al. (2015) and Padatella
et al. (2018), but not in detail, or just covering the most common aspects such as dynamics, types of events,
history, or tropospheric fingerprint. For instance, O'Neill et al. (2015) do not address the effects of SSWs on
the atmosphere above the stratopause, whereas Padatella et al. (2018) provide just an overview of SSWs influ-
ence on the whole atmosphere without going much in detail. Still, as anticipated previously, many questions
remain open. The present review aims to provide a general overview of SSWs by covering the major aspects
of SSWs, their impacts, and the outstanding research challenges. In section 2, a brief historical background
is provided, and section 3 describes the classification of these events. Dynamical theories for the occurrence
of SSWs are included in section 4, and possible external factors driving SSWs are discussed in section 5. The
predictability of SSWs is discussed in section 6, and their effects on climate and weather are presented in
section 7. Effects above the stratosphere are described in section 8, and chemical/tracer aspects are shown
in section 9. Finally, the outlook/conclusion is provided in section 10.

2. Historical Background
SSWs were discovered by Richard Scherhag in radiosonde temperature measurements above Berlin,
Germany. Scherhag started regular radiosonde measurements from the area of the former Tempelhof airport
in Berlin in January 1951. As professor and head of the recently founded Institute of Meteorology at Freie
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Figure 4. Radiosonde temperature measurements in Berlin-Tempelhof
during the first recorded sudden stratospheric warming in 21–28 February
1952. Figure from Wiehler (1955).

Universität Berlin, he was interested in exploring the stratosphere. With
the help of the U.S. allies in postwar Berlin, he was able to employ a
new type of American radiosonde using neoprene balloons which pro-
vided regular measurements of the stratosphere up to ∼30 km altitude
(∼10 hPa). In a first publication in spring 1952, Scherhag reported an
explosive-type warming of the high stratosphere in January 1952 and
concluded that the observed warming was too strong to be explained by
advection (Scherhag, 1952a). This “Berlin Phenomenon,” as Scherhag
called the warming, developed as follows: “While all measured strato-
spheric temperatures ranged between -56◦C and -69◦C on 26 January,
only two days later -37◦C were measured at 13 hPa. This means a sudden
warming of 30◦C had started on 27 January. On 30 January, the temper-
ature reached -23◦C in 10 hPa, followed by a rapid cooling.” Scherhag
also found that the warming slowly propagated downward to the 200-hPa
pressure level within 1 week. This first warming pulse was followed by
a second, even stronger warming about 1 month later, with a tempera-
ture maximum of -12.4◦C (a warming of ∼37◦C within 2 days) at 10 hPa
on 23 February and a change in circulation to southeasterly winds in the
middle stratosphere. Figure 4 shows the Tempelhof radiosonde temper-
ature measurements of 21 February (before the warming), 23 February
(at the peak of the SSW), and 28 February (after the peak) (Wiehler, 1955).
Also in February 1952, upper level wind data from radiosondes over
the northern United States indicated an increase of the frequency of
easterly winds at 50 hPa associated with a closed persistent anticyclonic
circulation northwest of Hudson Bay and a warming over Canada and
Greenland (Darling, 1953).

In a first attempt to explain the unexpected warming of the winter stratosphere, Scherhag (1952b) and
Willett (1952) suspected a severe solar eruption on 24 February to be the source. While we now know that
solar effects are not strong enough to force individual SSWs, a statistical relation between the occurrence
of SSWs and solar activity is actively discussed until the present day. A similar stratospheric warming had
also been noted the year before, in February 1951, from British Meteorological Office radiosonde and radar
measurements over England and Scotland. It was accompanied by a reversal of the lower stratospheric
winds to easterlies which were followed again by westerlies before the transition to summertime easterlies
(Scrase, 1953). It then took until the winters 1956/57 and 1957/58 that similarly strong SSWs were analyzed

Figure 5. 50-hPa temperature time series over Alert, Ellesmere Land, during the three winters with stratospheric warmings in the 1950s. Figure from
Warnecke (1962).
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Figure 6. 10-hPa height map on 18 January 1963 (left) and 27 January 1963 (middle) and sea-level pressure on 31 January 1963 (right) (Figure from Scherhag
(1965)). ©Springer. Used with permission.

in maps which had been specifically produced on stratospheric pressure levels (Teweles, 1958; Teweles &
Finger, 1958). Figure 5 shows the evolution of 50-hPa temperature over Alert, Ellesmere Land, during three
winters with stratospheric warmings in the 1950s.

With the start of the International Geophysical Year (IGY) in July 1957, the number of radiosonde bal-
loons reaching altitudes above 30 km increased. Stratospheric maps (daily or every 5 days, at 100, 50, 30, and
10 hPa) for the NH were published by several centers, e.g., the U.S. Weather Bureau, the Arctic Meteorology
Research Group of McGill University Montreal and the Stratospheric Research Group of Freie Universität
Berlin. Meteorological rocketsondes provided new insights: it was found, for example, that the strong strato-
spheric warming over Fort Churchill in January 1958 occurred a couple of days earlier in the altitude region
above 40 km than in the layers below (Stroud et al., 1960). Moreover, intense warmings were detected in
the upper stratosphere which were never detected below 10 hPa. In order to obtain an increased number of
high-altitude soundings during stratospheric warmings, the STRATWARM warning system was established
by the WMO in 1964. These alerts included information on the intensity and movement of the warm-
ings and were distributed internationally from the meteorological centers at Melbourne, Tokyo, Berlin, and
Washington D.C. As suggested in the WMO/IQSY (1964) report, SSWs were classified according to their
time of occurrence (“midwinter warmings” vs. “final warmings” in late winter) and their intensity. While
“minor midwinter warmings” were characterized by a strong warming of the Arctic stratosphere at 10 hPa
and higher levels, “major midwinter warmings” had to be additionally accompanied by a complete circula-
tion reversal from westerlies to easterlies polewards of 60◦N at the same levels. Alternative SSW definitions
that were developed later are discussed in section 3.

In a plea for additional upper air data, Scherhag et al. (1970) raised the question of “whether an intimate
knowledge of the stratospheric circulation would prove valuable in, for example, forecasting.” They stated
that phase relationships between events in the stratosphere and troposphere must be known for a full explo-
ration of forecast probabilities. In fact, Scherhag had speculated about the impact of SSWs on surface weather
as early as in his initial 1952 report, in which he pointed out a drop in forecast skill score following the
February 1952 SSW (perhaps related to the fact that stratospheric information was not included in the fore-
casts). Indeed, some early studies had pointed at a potential interaction of tropospheric and stratospheric
zonal wavenumber 2 during the 1967/68 warming (Johnson, 1969) and the role of tropospheric blockings for
the onset of stratospheric warmings (Julian & Labitzke, 1965). An early example of stratosphere-troposphere
coupling is illustrated in Figure 6 which shows 10-hPa height maps at the beginning (18 January, left panel)
and peak (27 January, middle panel) of the 1963 stratospheric warming, and the surface pressure map of 31
January (Figure 6, right panel) (Scherhag, 1965). A few days after the stratospheric warming, a surface anti-
cyclone developed over Greenland which extended through the troposphere up to the middle stratosphere.
This was consistent with Labitzke (1965), who described the occurrence of a tropospheric blocking about
10 days after a stratospheric warming, and Quiroz (1977), who found tropospheric temperature changes after
a stratospheric warming.
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With the beginning of the satellite era in 1979, much improved data coverage allowed new breakthroughs
in our understanding of stratospheric dynamics and SSWs. McIntyre and Palmer (1983) showed the first
observationally derived hemispheric-scale maps of PV on a midstratospheric potential temperature surface
(850 K) based on the then newly available radiance data from the stratospheric sounding unit (SSU). These
maps clearly demonstrate the existence of large amplitude planetary wavenumber 1 preceding the 1979
SSW event with subsequent evolution showing wave breaking. The maps furthermore illustrate the split
of the vortex during the 1979 major SSW as seen in PV at 850 K. Satellite data have continued to provide
valuable observational constraints on the dynamics and transport characteristics surrounding SSW events
(e.g., Manney, Harwood et al., 2009; see also section 9).

3. Types and Classification of SSWs
In the early decades after the discovery of SSWs, the WMO developed an international monitoring program
called STRATALERT, led by Karin Labitzke of Freie Universität Berlin, to detect SSWs. Early metrics to
measure these events were based on temperature changes, as the sudden and rapid warming of the strato-
sphere were key features measurable by radiosondes and rocketsondes. WMO/IQSY (1964) established that
“major” SSWs were separated from more minor events by requiring a reversal (from westerly to easterly) of
the zonal winds poleward of 60◦ latitude and an increase in the zonal-mean temperature polewards of 60◦

at 10 hPa (Labitzke, 1981; McInturff, 1978; WMO/IQSY, 1964). The inclusion of a zonal circulation reversal
criteria stems from wave-mean flow theory which stipulates that quasi-stationary planetary-scale waves can-
not propagate into easterly flow (Charney & Drazin, 1961; Matsuno, 1971; Palmer, 1981). Thus, an obvious
dynamical distinction between a major and minor SSW is that vertical wave propagation from the tropo-
sphere is prohibited beyond the middle stratosphere following a major event. A remarkable aspect of these
early metrics is the extent to which they still form the basis of SSW detection, despite being based on a very
small number of observations.

The most commonly used metric to detect major SSWs was proposed by Charlton and Polvani (2007)
(hereafter CP07) and adapted from earlier definitions: the reversal of the daily-mean zonal-mean zonal
winds from westerly to easterly at 60◦N latitude and 10 hPa from November to April (by CP07, wind reversals
must be separated by 20 consecutive days of westerly winds and must return to westerly for at least 10 con-
secutive days prior to 30 April, to be classified as a mid-winter SSW.). The earlier criteria for a temperature
gradient increase was found to be largely redundant since, by thermal wind balance, this occurs in almost
all cases of a zonal wind reversal. While the detection of major SSWs using the CP07 definition is sensitive to
the particular latitude, altitude, and threshold of the zonal wind weakening (Butler et al., 2015), the choice
of a reversal at 10 hPa and 60◦N optimizes key features and impacts of major SSWs (Butler & Gerber, 2018).
Having a common metric for major SSWs allows for consistent intercomparison of models (Ayarzagüena,
Polvani, et al., 2018; Charlton-Perez et al., 2013; Kim et al., 2017) and reanalyses (Ayarzagüena et al., 2019;
Butler et al., 2017; Martineau et al., 2018; Palmeiro et al., 2015).

It should be noted that the CP07 metric was developed during a time when the increased availability of global
climate model simulations necessitated the evaluation of the model stratosphere in large gridded data sets
(Charlton-Perez et al., 2013). Thus, a major criterion for the CP07 metric was that the data request needed
for the calculation should be as small as possible. In the current era, with greater availability of dynamical
metrics output from model simulations (Gerber & Manzini, 2016), this requirement is not as stringent. Thus,
it is worth emphasizing the intended use of the CP07 definition as a simple metric for polar vortex weak
extremes, rather than as an infallible selection of events that should be deemed “important.” This metric
yields on average six major SSWs per decade in the NH. There is however significant decadal variability in
the frequency of SSW events (Reichler et al., 2012), with the 1990s exhibiting only two SSWs (in 1998 and
1999) and the 2000s exhibiting nine events according to the CP07 metric. According to a reconstruction
of SSW frequency based on the surface North Atlantic Oscillation (NAO), recent decades since 1970 show
stronger decadal variability in SSW frequency than the period in the middle of the 20th century, with the
1990s likely representing the longest absence of SSW events since 1850 (Domeisen, 2019).

The application of the CP07 metric to the SH polar vortex (where zonal-mean zonal wind reversals at 60◦S
and 10 hPa between May and October are considered) reveals only one major SH SSW in the reanalysis back
to 1958, which occurred on 26 September 2002 (Shepherd et al., 2005). This highlights important differences
in dynamics and climatology between the NH and SH. However, in mid-September of 2019, an extremely
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anomalous weakening of the SH vortex occurred (Hendon et al., 2019; Rao et al., 2020) that did not meet the
CP07 criterion for a major SSW. Nonetheless, this event should not be disregarded simply because the circu-
lation failed to meet one metric; the event set new records for midstratospheric temperatures in September,
and the downward influence from this SSW was associated with an extremely persistent equatorward shift
of the SH jet stream that led to significant impacts on surface climate, such as extensive Australian bushfires
(Lim et al., 2019). Further diagnostics should thus be considered for evaluating the relevance of extreme
vortex events in both hemispheres for surface weather effects; a so-called minor SSW can have major
societal impacts.

In addition to major versus minor SSWs, there is also classification of the morphology of the event. During a
SSW, the polar vortex can either be displaced off the pole or split into two pieces. Several different methods
have been developed to classify split versus displacements (CP07 Lehtonen & Karpechko, 2016; Mitchell
et al., 2011; Seviour et al., 2013). About a third of the observed 36 major SSWs in the 1958–2012 period
can be unambiguously classified across all methods as splits and another third as displacements (Gerber
et al., 2021). The rest of the events are more ambiguous across methods, perhaps because in some cases, the
polar vortex both displaces and splits within a period of several days (Rao et al., 2019).

Furthermore, SSWs have been classified by the zonal wavenumber of the tropospheric precursor patterns
leading up to the SSW. These predominantly wave 1 and wave 2 patterns tend to precede SSWs (Cohen
& Jones, 2011; Garfinkel et al., 2010; Tung & Lindzen, 1979a; Woollings et al., 2010). In particular, block-
ing (a persistent anomalous high pressure) over the Pacific region and North Atlantic/Scandinavian region
has been tied to wave 2 driving of split vortex events (Martius et al., 2009). Anomalous low pressure over
the North Pacific/Aleutians with Euro-Atlantic blocking has been tied to wave 1 driving of primarily dis-
placement vortex events (Castanheira & Barriopedro, 2010). While displacements of the vortex are nearly
always preceded by wave 1 forcing, splits of the vortex can be preceded by either wave 1 or wave 2 forcing
(Bancalá et al., 2012; Barriopedro & Calvo, 2014) and often proceed with an increase in wave 1 followed by
a subsequent increase in wave 2.

While the focus of this review is on SSWs, which represent the weakest polar vortex extremes, SSWs are
just one extreme within a broad spectrum of polar stratospheric dynamic variability. A wide range of varia-
tions (see Figure 1, daily maximum and minimum values in black lines)—from more minor deviations from
climatology, to the strongest polar vortex extremes—can influence stratosphere-troposphere coupling, trans-
port, and chemical processes. Polar stratospheric variability peaks from January to March in the NH and
from September to November in the SH (though variability is less). Early winter extremes may evolve differ-
ently than late winter extremes; for example, Canadian Warmings are amplifications of the Aleutian High in
the lower and middle NH stratosphere and are the dominant type of stratospheric warming in early boreal
winter (Labitzke, 1977). Final warmings refer to the seasonal transition of the polar vortex from its westerly
to easterly state. In the NH, the timing and other characteristics of this transition present a large interan-
nual variability that in turn may have surface impacts, often distinct from those associated with midwinter
SSW (Ayarzagüena & Serrano, 2009; Butler et al., 2019; Hardiman et al., 2011; Thiéblemont et al., 2019). In
the SH, the timing of the final warming drives a substantial fraction of surface climate variability in austral
late spring and summer (Byrne & Shepherd, 2018; Lim et al., 2018).

Additional metrics have been proposed to better capture the full spectrum of polar stratospheric variability.
A number of studies consider metrics based on empirical orthogonal functions (EOFs). For example, the first
EOF of geopotential height anomalies, also known as the “annular mode,” (Baldwin & Dunkerton, 1999;
2001; Baldwin & Thompson, 2009; Gerber et al., 2010), captures mass fluctuations between the polar cap
and extratropics. EOFs of vertical polar-cap temperature profiles have been used to identify weak vortex
extremes (SSWs) that have the most extended recovery periods, called “Polar-night Jet Oscillations” (PJOs)
(Hitchcock & Shepherd, 2012; Hitchcock et al., 2013; Kuroda & Kodera, 2004). An advantage to EOF-based
techniques is that thresholds for extremes are based on anomalies (deviations from the climatology) rather
than absolute values, as in the CP07 zonal wind metric. Thus, EOF metrics can capture anomalous events
relative to any changes in the climatology (Kim et al., 2017; McLandress & Shepherd, 2009).

4. Development of Dynamical Theories
SSWs have been interpreted as a manifestation of strong two-way interactions between upward propagat-
ing planetary waves and the stratospheric mean flow, although the extreme flow disruptions stretch the
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concept of waves on a mean flow. The polar vortex can be disrupted by large wave perturbations, primar-
ily planetary-scale zonal wavenumber 1–2 quasi-stationary waves. Sufficient wave forcing of the mean flow
by these waves can result in an SSW, with the breakdown of the westerly polar vortex, and easterly winds
replacing westerlies near 10 hPa, 60◦N. When the winds in the polar vortex slow down, air is forced to move
poleward to conserve angular momentum, with descent over the polar cap (arrows in Figure 2). The adia-
batic heating associated with this descent results in the observed rapid increases in polar cap temperatures
on time scales of just a few days.

Strong westerly winds in the polar night jet inhibit all but the largest, planetary-scale waves from prop-
agating into the stratosphere (Charney & Drazin, 1961). While planetary-scale waves can spontaneously
be generated by baroclinic instability (Domeisen & Plumb, 2012; Hartmann, 1979) or via upscale cascade
from synoptic-scale waves (Boljka & Birner, 2020; Scinocca & Haynes, 1998), they are chiefly forced by
planetary-scale features at the surface: topography and land-sea contrast (Garfinkel et al., 2020). The relative
zonal symmetry of the austral hemisphere explains why SSWs are almost exclusively a boreal hemispheric
phenomena, but this does not imply that the stratosphere just passively responds to wave driving from the
troposphere.

The diversity of observed SSWs demonstrates that some SSWs appear to be forced by anomalous bursts of
planetary wave activity from the troposphere, while in other SSWs, the stratosphere itself acts to regulate
upward wave propagation. All theories agree, however, that it is the sustained dissipation of wave activity
in the stratosphere, chiefly through nonlinear wave breaking and irreversible mixing (Eliassen-Palm flux
convergence), that generates a deep, sustained warming of the polar vortex. Once the vortex is destroyed,
strong radiative cooling helps to rebuild the vortex provided there is time before the end of winter, but this
radiatively controlled process can take several weeks (see Figure 3). Rotation and stratification couple the
poleward transport of heat by waves to a downward transport of westerly momentum. Thus, the warm-
ing of the polar stratosphere occurs in concert with an eradication of the climatological vortex in a major
warming event.

4.1. Wave-Mean Flow Interactions, Dissipation, and SSWs

The wintertime stratospheric polar vortex is formed primarily through radiative cooling, as the variation of
insolation with latitude and season decreases the absorption of UV radiation by ozone at higher latitudes.
Much of the theory of how SSWs occur relies on the basic assumption of waves propagating on a zonal
mean flow. Although this assumption is violated during the extreme flow disruptions of SSWs (particularly
at high latitudes), wave mean-flow interaction theory has been remarkably successful in explaining (at least
qualitatively) the dynamics of how SSWs occur.

Upward propagation of a Rossby wave on a zonal-mean flow is associated with a poleward heat flux, v′𝜃′
(e.g., Charney & Drazin, 1961; Eliassen & Palm, 1961) (see also Vallis, 2017, chapter 10). Warming of the
vortex could then, in principle, be provided by convergence of the heat flux on the poleward flank of an
upward propagating planetary wave. However, an opposing tendency arises due to the fact that the wave
also induces vertical advection, producing adiabatic cooling where the heat flux would otherwise warm the
air. Likewise, the air on the equatorward side, which would be cooled by the poleward heat flux, sinks,
and adiabatically warms.) For conservatively propagating waves, i.e., a case with no dissipation, the two
tendencies exactly cancel when integrated over the wave and no net warming or cooling occurs:

𝜔r
𝜕𝜃

𝜕p
= −

𝜕

𝜕𝜑
(cos𝜑v′𝜃′)

a cos𝜑
. (1)

Wave transience, say due to a wave propagating into the region of interest, gives rise to temporary polar
cap warming and slowing down of the vortex with reversed tendencies as the wave leaves the region. In
Equation 1, 𝜔 corresponds to vertical velocity in pressure coordinates, 𝜃 is the potential temperature, v refers
to the meridional wind, a is the Earth's radius, and 𝜑 refers to latitude. Overbar and primes denote zonal
mean and deviation from it, respectively. Here, we have adopted the notation 𝜔r to refer to the reversible
component of zonal mean vertical motion that arises due to conservatively propagating waves. The nonac-
celeration theorem states that for steady waves with no dissipation and no critical levels, waves propagate
through the mean flow without leading to accelerations or decelerations. In the presence of dissipation or
diabatic processes, the full vertical velocity 𝜔≠𝜔r , but the reversible component 𝜔r can still be identified
from (1).
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The calculus changes when the waves are allowed to dissipate, either damped by radiation and/or friction,
or more cataclysmically, through nonlinear breaking (though dissipation still plays a role, as breaking sim-
ply moves energy to smaller scales). Rossby waves carry easterly momentum owing to their intrinsic easterly
phase speed; this easterly momentum is transferred to the mean flow during dissipation. The resulting east-
erly body force not only decelerates the vortex but also causes poleward flow, due to the Coriolis torque,
and downwelling over the polar cap. This downwelling opposes the wave-induced upward motion described
above. With extreme wave dissipation, it completely overwhelms the upwelling tendency and drives the
spectacular warming of the polar stratosphere characterized by an SSW.

From this perspective, formalized in the “Transformed Eulerian Mean” representation of atmospheric
dynamics (Andrews & McIntyre, 1976; Edmon et al., 1980), it is the residual (∼Lagrangian) downwelling
that gives rise to warming of the polar cap when planetary waves dissipate. Neglecting diabatic heating
during the onset of the warming, this can be written as in Equation 2:

𝜕𝜃

𝜕t
≈ −𝜔𝜕𝜃

𝜕p
−

𝜕

𝜕𝜑
(cos𝜑v′𝜃′)

a cos𝜑
= −𝜔𝜕𝜃

𝜕p
+ 𝜔r

𝜕𝜃

𝜕p
= −𝜔∗ 𝜕𝜃

𝜕p
, (2)

where 𝜔
∗

≡ 𝜔 +
𝜕

𝜕𝜑
(cos𝜑v′𝜃′)

(a cos𝜑) 𝜕𝜃
𝜕p

is a modified vertical velocity that incorporates the effect of reversible

wave-induced vertical motion and therefore corresponds to the net, residual vertical motion that gives rise
to adiabatic warming (residual downwelling) or cooling (residual upwelling). Full temperature tendency
needs to also take into account diabatic (radiative) heating.

Planetary wave dissipation gives rise to polar cap warming. This warming can at times be explosive, resulting
in SSWs even if the waves themselves remain linear, due to the nonlinear nature of the wave-mean flow
coupling (e.g., Geisler, 1974; Holton & Mass, 1976; Plumb, 1981). However, the vortex may be displaced from
the pole or split in two, clearly violating the assumption of waves propagating on a zonal mean flow. The
wave-induced deceleration of the vortex and the associated polar cap warming are at extreme levels; exactly
how such extreme interactions between the waves and mean flow get triggered and unfold to the point of
complete breakdown of the vortex is still not fully understood.

The wave breaking associated with a specific SSW is shown in Figure 7, illustrated with maps of potential
vorticity (PV) on isentropic surfaces. PV is defined by

PV = −g𝜕𝜃
𝜕p

(𝜁𝜃 + 𝑓 ), (3)

where g is gravity, 𝜃 is potential temperature, p is pressure, 𝜁𝜃 is relative vorticity perpendicular to an
isentropic surface, and f is the Coriolis parameter. PV combines the conservation of mass and angular
momentum. It is thus materially conserved in the absence of diabatic processes and hence provides an effec-
tive diagnostic tool on the time scales associated with SSWs. Maps of PV on isentropic surfaces, as in Figure 7,
show the breaking of planetary-scale Rossby waves in the “surf zone” (McIntyre & Palmer, 1983, 1984). As
winter progresses, wave breaking in the surf zone sharpens the edge of the vortex, and if the wave breaking
persists, the vortex can be displaced from the pole or even split in two. This can be viewed on horizontal
maps of PV or simply by measuring the size of the polar vortex in terms of PV (e.g., Baldwin & Holton, 1988;
Butchart & Remsberg, 1986).

Two different perspectives exist in the literature regarding the role of the troposphere in initiating wave
breaking events in the stratosphere (see section 4.2). Early work focused on the role of anomalous wave
fluxes from the troposphere that drive the SSW, i.e., provide sufficient additional wave drag in the strato-
sphere to destroy the vortex, especially if it accumulates over a sufficiently long period of time. A second
view holds that, given a wave field provided by the troposphere—which does not need to be anomalously
strong—the stratospheric polar vortex may spontaneously feed back onto the wave field such that both get
mutually amplified, reminiscent of resonance phenomena (e.g., Plumb, 1981).

Regardless of the perspective on the triggering mechanisms of SSWs, once the primary circulation breaks
down and easterlies ensue, vertical propagation of stationary Rossby waves is inhibited. Stationary wave can
only exist if there are mean westerlies to offset their intrinsic easterly propagation. The resulting “critical
line” drives an accumulation of wave dissipation just below it, associated with more easterly acceleration
and rapid lowering of the critical line (Matsuno, 1971). The corresponding downward progression of easterly
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Figure 7. Illustration of the evolution of the polar vortex during an SSW in the winter 2018/19. Panels show PV on the 850-K isentropic surface on six dates,
showing a sequence illustrating a displacement of the vortex off the pole with concomitant stripping away of vortex filaments into the surf zone. Once the
vortex is fully displaced off the pole (bottom middle). it then further splits into two smaller vortices (bottom right). From Baldwin et al. (2019) ©American
Meteorological Society. Used with permission.

zonal wind anomalies is mechanistically similar to the QBO (Plumb & Semeniuk, 2003) but acts on a much
faster time scale, on the order of days, not years.

4.2. Bottom Up or Top Down: An Evolving Understanding on the Mechanism(s) Driving SSWs

A “bottom up” perspective, focused on the role of enhanced tropospheric wave forcing, is inherent in
Matsuno's seminal work on showing that SSWs are dynamically forced. Matsuno (1971) prescribed a
switch-on planetary wave 2 forcing at the lower boundary (approximately the tropopause) of a GCM. The
model produced a strong split SSW in response to this pulse from below.

Matsuno's work suggests two key criteria for forcing an SSW. (1) SSWs only happen with sufficiently strong
planetary wave forcing from the troposphere, and (2) SSWs require a pulse of anomalously strong wave
forcing from the troposphere to initiate. Support for the first criterion includes the simple observation that
warming events are much more prevalent in the NH versus SH. Additional support for a necessary minimum
amount of wave forcing from the troposphere was established in a conceptual model developed by Holton
and Mass (1976), who sought to distill an SSW down to its most basic elements.

The Holton and Mass model consists of a single planetary wave of constant amplitude, prescribed as
input forcing to the stratosphere at its lower boundary. The mean flow (i.e., the vortex) exists either in a
strong state with weak wave amplitudes (corresponding to weak wave-mean flow interaction), or a weak
state with strong wave amplitudes (corresponding to strong wave-mean flow interaction similar to the
dynamics involved in SSWs). More recently, idealized GCM studies have found a sharp increase in SSW
frequency as planetary-scale zonal asymmetries in the underlying flow are increased, either by topography
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(e.g., Gerber & Polvani, 2009; Taguchi & Yoden, 2002) or thermal perturbations (Lindgren et al., 2018),
though both topography and land-sea contrast may need to be present if represented in a realistic manner
(Garfinkel et al., 2020).

The second criterion in the Matsuno model—that SSWs are driven by an exceptional pulse of wave activity
from the troposphere—is supported by the fact that SSWs are often preceded by blocking events, which
amplify the tropospheric wave activity (e.g., Martius et al., 2009; Quiroz, 1986). This has led researchers to
look for tropospheric precursor events that potentially give rise to additional planetary wave fluxes entering
the stratosphere (e.g., Cohen & Jones, 2011; Garfinkel et al., 2010; Sun et al., 2012).

Palmer (1981) suggested that the stratospheric vortex may need to be “preconditioned” to accept a pulse of
wave activity, based on observations of the 1979 event, a topic further explored by McIntyre (1982). Various
studies have suggested that the strength and size of the vortex play a critical role in allowing wave activity
to penetrate deep into the stratosphere (Albers & Birner, 2014; Jucker & Reichler, 2018; Kuttippurath &
Nikulin, 2012; Limpasuvan et al., 2004; Nishii et al., 2009).

Newman et al. (2001) and Polvani and Waugh (2004) pointed out that a single precursor event will likely
not cause sufficient deceleration of the stratospheric polar vortex; rather, it is the accumulated wave forcing
over 40–60 days that needs to be anomalously strong to cause enough deceleration to reverse the zonal mean
flow around the polar cap. Sjoberg and Birner (2012) further pointed out that sustained forcing that lasts for
at least 10 days, but does not need to be anomalously strong, is crucial for forcing SSWs. Processes that can
lead to such a sustained increase in wave forcing from the troposphere are discussed in section 5.

Preconditioning suggests that the state of the stratospheric vortex impacts its receptivity to accept waves
from the troposphere. The “top down” perspective takes this view to the extreme, supposing that fluctuations
in tropospheric wave forcing do not play an important role at all. Rather, as long as the background wave
fluxes entering the stratosphere are strong enough (such as provided by the climatological conditions in NH
winter), the stratosphere is capable of generating SSWs on its own.

The top down perspective has often been framed in the context of resonant growth of wave disturbances
(e.g., Clark, 1974; Tung & Lindzen, 1979b). In a particularly insightful incarnation of this mechanism,
the wave-mean flow interaction causes the vortex to tune itself toward its resonant excitation point
(Matthewman & Esler, 2011; Plumb, 1981; Scott, 2016). Support for this perspective comes from idealized
numerical model experiments that show that the stratosphere is capable of controlling the upward wave
activity flux near the tropopause (Hitchcock & Haynes, 2016; Scott & Polvani, 2004, 2006) and that strato-
spheric perturbations can trigger SSWs even when the tropospheric wave activity is held fixed (de la Cámara
et al., 2017; Sjoberg & Birner, 2014).

Preconditioning of the polar vortex, i.e., wave driving that brings it to the critical state, would clearly play
a key role in this mechanism, suggesting that SSWs could potentially be predicted in advance, even in the
limit where they are entirely controlled by the state of the stratospheric vortex.

The bottom up and top down SSW mechanisms are associated with a different expected lag-lead relation-
ship in upward wave energy propagation (i.e., the Eliassen-Palm flux) between the tropospheric source and
stratospheric sink. Events forced by tropospheric waves will be preceded by a build up of wave activity over
time, while self-tuned resonant SSWs would be characterized by nearly instantaneous wave amplification
throughout an extended deep layer, and no lag between troposphere/tropopause and stratosphere.

In this context, it is important to note that fluctuations in the upward wave flux at 100 hPa are not generally
representative of fluctuations in the troposphere below (de la Cámara et al., 2017; Jucker, 2016; Polvani &
Waugh, 2004). The typical tropopause pressure over the extratropical atmosphere during winter is around
300 hPa, as shown in Figures 2 and 3. That is, wave flux events at 100 hPa can generally not be interpreted as
tropospheric precursor signals because two thirds of stratospheric mass is below the height of the 100-hPa
surface. Nevertheless, enhancements of upward wave fluxes from the troposphere at sufficiently long time
scales (e.g., associated with climate variability extending over winter) tend to cause enhanced wave flux
across 100 hPa into the polar vortex, which increases the likelihood for SSWs (as discussed in section 5).

Evidence supporting both the bottom up and top down pathways has been observed, but it has become clear
that the second criterion suggested by the Matsuno (1971) model—that the troposphere must drive an SSW
with a pulse of enhanced wave activity—is not necessary. Birner and Albers (2017) found that only one third
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Table 1
Revisiting the QBO-SSW Relationship During 1958–2019, Based on the Dates
Computed by Charlton and Polvani (2007) for 1958–2001 and by Rao
et al. (2019) for 2002–2018 With NCEP/NCAR Reanalysis Data

QBO-SSW relationship
QBO phase Winter no. SSW no. SSW frequency
EQBO (QBO50 ≥ 5) 20 18 0.9*
WQBO (QBO50 ≤ -5) 36 18 0.5
Neutral (|QBO50| < 5) 6 1 0.17*
Total 62 37 0.60

Note. The first column is the QBO phase. The second column is the corre-
sponding composite size total winter (November–February mean) size. The
third column is the number of SSWs events for that composite size, and the
fourth column is the SSW frequency (units: events times per year). The unit
of QBO50 is ms−1. Significance for this and following tables is computed
based on the following Monte Carlo test: SSWs are randomly assigned to win-
ters while maintaining the overall SSW frequency, and then the frequency of
SSWs for each phase is computed. This procedure is repeated 10,000 times, to
which the observed SSW frequency is compared. If the observed frequency is
less than 2.5%(5%) of the random samples, or greater than 97.5%(95%), then
we can reject a null hypothesis of no relationship at the 95% or 90% confi-
dence levels, which are indicated on the table with bold and a star. Reprinted
with permission from Rao et al. (2019). EQBO = easterly phase of QBO;
WQBO = westerly phase of QBO.

of SSWs can be traced back to a pulse of extreme tropospheric wave fluxes. Roughly two thirds of observed
SSWs are more consistent with the top-down category or do not fit into either prototype (i.e., tropospheric
wave fluxes are anomalously strong but not extreme). Similar ratios have been observed in modeling studies
by White et al. (2019) and de la Cámara et al. (2019), although results from mechanistic GCM experiments
by Dunn-Sigouin and Shaw (2020) reemphasize the role of tropospheric wave fluxes.

It also appears that the mechanism may vary with the type of warming. While Matsuno (1971) prescribed
a wave 2 disturbance, it appears that wave 1 (displacement) events tend to be associated with the slow
build up of wave activity, better matching the bottom-up paradigm, although resonant behavior has also
been suggested for displacement events (Esler & Matthewman, 2011). Split, or wave 2, events are more
instantaneous in nature (Albers & Birner, 2014; Watt-Meyer & Kushner, 2015), more closely matching the
top-down paradigm.

5. External Influences on SSWs
Because there have only been around 40 observed SSWs between 1958 and 2019, it is challenging to quantify
and/or establish statistically robust changes in frequency of SSWs from external influences, especially if the
observations show a subtle effect. Despite this difficulty, a range of external influences have been connected
to SSWs, including the QBO, ENSO, the 11-year solar cycle, the MJO, and snow cover. Confidence in the
robustness of such relationships is increased if there is a well described physical mechanism that is expected
to produce the observed effect, for example, through changes in the propagation and breaking of Rossby
waves in the stratosphere or the generation of planetary Rossby waves in the troposphere. Similarly, confir-
mation of observed relationships in modeling studies also increases confidence that they are robust. Even
more challenging is establishing relationships in the observations whereby two or more external influences
act in concert (Salminen et al., 2020), a topic we return to in section 10.

It has been recognized for 40 years that the stratospheric polar vortex is weaker during the easterly QBO
winter than during the westerly QBO winter, known as the Holton-Tan relationship (Anstey & Shepherd,
2014; Holton & Tan, 1980). The frequency of occurrence of SSWs during each QBO phase is shown in Table 1
based on NCEP-NCAR reanalysis. SSW likelihood is higher during easterly QBO winters than during west-
erly QBO phase (0.9 vs. 0.5 year), consistent with early studies (Labitzke, 1982; Naito et al., 2003). Models
also simulate a weakened vortex and more SSWs during easterly QBO as compared to westerly QBO, though
the magnitude of the effect tends to be somewhat weaker than that observed (e.g., Anstey & Shepherd, 2014;
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Table 2
As in Table 1 but for the ENSO-SSW Relationship During 1958–2019

ENSO-SSW Relationship
ENSO phase Winter no. SSW no. SSW frequency
El Niño (Niño34 ≥ 0.5) 20 13 0.65

moderate El Niño (0.5 ≤ Niño34≤ 2) 17 13 0.77
La Niña (Niño34 ≤ -0.5) 23 15 0.65
Neutral (|Niño34| < 0.5) 19 9 0.47
Total 62 37 0.60

Note. The unit of Niño34 is ◦C. Reprinted with permission from Rao et al. (2019).

Garfinkel et al., 2018; Rao et al., 2020a). At least four different (likely complementary) mechanisms have
been proposed linking the QBO to vortex variability, and the relative importance of these mechanisms is
still unclear (Garfinkel et al., 2012; Holton & Tan, 1980; Silverman et al., 2018; Watson & Gray, 2014; White
et al., 2015).

The relationship between the northern winter stratospheric polar vortex and ENSO, including a full dis-
cussion of possible mechanisms, has recently been reviewed in this journal (Domeisen et al., 2019). The
statistical relationship between ENSO and SSWs in NCEP-NCAR reanalysis data is revisited and shown in
Table 2. The likelihood of SSW events increases in both El Niño and La Niña relative to the ENSO neutral
state (Butler & Polvani, 2011; Garfinkel et al., 2012), and while the modulation of SSWs is not statistically sig-
nificant, the effect of El Niño on the seasonal mean stratospheric vortex is significant and of similar strength
to that of EQBO (Camp & Tung, 2007; Domeisen et al., 2019; Garfinkel & Hartmann, 2007). Increases in SSW
frequency during La Niña in the observed record are not thought to be forced and, instead, are associated
with internal variability or confounding climate forcings (Domeisen et al., 2019; Weinberger et al., 2019),
particularly in the case of weak La Niña events (Iza et al., 2016). High-top models show a response to oppo-
site phases of ENSO that, if anything, is generally stronger than that observed (Garfinkel et al., 2012, 2019;
Taguchi & Hartmann, 2006) and that can be used for improving predictability over Europe (Domeisen
et al., 2015).

The solar cycle may affect the stratospheric polar vortex, and earlier work reported that midwinter SSWs
tend to occur during solar minimum QBO easterly phase (i.e., classical Holton-Tan effect) and during solar
maximum and QBO westerly phase (Gray et al., 2004, 2010; Labitzke et al., 2006, 1987). Updating these
relationship for data through 2019, however, suggests that although this relationship holds, it is modest.
During solar maximum/westerly QBO years, midwinter SSW frequency is 0.44 year (Table 3). During solar
minimum/easterly QBO years, the frequency of midwinter SSW is increased somewhat (0.67 year), and this
increase is statistically significant at the 90% confidence level. Observations alone are not sufficient to verify
that a solar-QBO-SSW relationship is robust. There is a wide spread in the ability of models to simulate an
influence of solar variability on the polar stratosphere (Mitchell et al., 2015), partly related to their ability to
capture the effects of solar variability on the tropical stratosphere.

October Eurasian snow cover has also been linked to subsequent variability of the stratospheric vortex,
with more extensive snow leading to a weakened vortex (Cohen et al., 2007; Henderson et al., 2018) via
a strengthened Ural ridge and subsequent constructive interference with climatological stationary waves
(Cohen et al., 2014; Garfinkel et al., 2010). There is a slight increase in SSW frequency for winters following
enhanced snow cover (Table 4), but this effect is not statistically significant. Results are similar if only early
winter SSW events are considered (not shown). The relationship between October Eurasian snow and the
monthly mean vortex strength is nonstationary: it peaked over the period 1991–2010 and has since collapsed
(Henderson et al., 2018). Most free-running models tend to not capture the link between snow cover and a
weakened vortex (Furtado et al., 2015), though there are some exceptions (Garfinkel et al., 2020), and models
forced with idealized snow perturbations do capture this effect to some extent (Henderson et al., 2018).

The MJO has also been shown to influence the timing of SSW events: of the 23 events considered by Schwartz
and Garfinkel (2017) and the two events since, more than half (13 of 25) were preceded by MJO phases
with enhanced convection in the tropical West Pacific (6 or 7 as characterized by Wheeler & Hendon, 2004).
The climatological occurrence of these phases is ∼18% (updated from Schwartz & Garfinkel, 2017), and
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Table 3
As in Table 1 but for the Solar-SSW Relationship During 1958–2019

Solar-SSW Relationship
solar phase QBO phase Winter no. SSW no. (JF SSW no.) SSW frequency
Max EQBO 11 11 (6) 1.0* (0.55)

WQBO 16 8 (7) 0.5* (0.44)
Neutral 3 1 (0) 0.33 (0.0)

SUM 30 20 (13) 0.67 (0.43)
Min EQBO 9 7 (6) 0.78 (0.67*)

WQBO 20 10 (6) 0.5 (0.3)
Neutral 3 0.0 (0.0) 0.0 (0.0)

SUM 32 17 (12) 0.53 (0.38)
Total 62 37(25) 0.60 (0.40)

Note. Max = solar maximum; Min = solar minimum. The number in parentheses is SSWs during
January–February (JF). Reprinted with permission from Rao et al. (2019).

hence, this represents an increased probability of an SSW occurring. The mechanism whereby convection in
the West Pacific weakens the vortex is similar to the mechanism for the influence of ENSO and snow cover:
the transient extratropical response associated with the MJO constructively interferes with the climatologi-
cal planetary wave pattern (Garfinkel et al., 2014). Models simulate an effect similar to that observed (Kang
& Tziperman, 2017; Schwartz & Garfinkel, 2020), and SSW probabilistic predictability is enhanced when
the MJO is strong (Garfinkel & Schwartz, 2017).

6. How Well Can SSWs Be Forecast?
Prediction system models (particularly systems with high tops) are typically able to capture the onset of SSW
events more than 5 days before the event (Tripathi et al., 2015). Fewer than 50% of ensemble members predict
the SSW date at lead times of 2 weeks (Domeisen et al., 2020a), though individual events can exhibit longer
predictability (Rao et al., 2019). There is, however, significant event-to-event variability in predictability for
the same modeling systems as demonstrated for European Centre for Medium-Range Weather Forecasts
(ECMWF) forecasts by Karpechko (2018). Much of this variation in predictive skill is likely linked to the
limitations in predictive skill of key tropospheric drivers of the SSW process. An interesting recent example
of this is the limited skill that models had in forecasting the February 2018 SSW, which has been linked to
the inability of some models to capture high pressure over the Urals (Karpechko et al., 2018) and related
anticyclonic wave breaking in the North Atlantic sector (Lee et al., 2019).

There can also be substantial variation in forecasting skill for different modeling systems, both in forecasting
individual SSW events (Rao et al., 2019; Taguchi, 2018, 2020; Tripathi et al., 2016) and in the mean aggregate
skill (Domeisen et al., 2020a). The impact of long standing stratospheric biases and how these influence

Table 4
As in Table 1 but for the October Snow Cover-SSW Relationship During
1968–2019

Snow-SSW relationship
Snow coverage Winter no. SSW no. SSW frequency
Enhanced 14 9 0.64
Reduced 17 9 0.53
Neutral 20 12 0.6
No data 1 1 —
Total 52 31 0.59

Note. Snow cover data are sourced online (https://climate.rutgers.edu/
snowcover/table_area.php?ui_set=1), with “enhanced“ and “reduced”
defined as snow cover anomalies exceeding 0.5 standard deviations. Snow
data are missing for October 1969.
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the skill of different modeling systems, for example, cold biases in the lowermost extratropical stratosphere,
remains an area of active research interest. As noted by Noguchi et al. (2016), predictions of SSW events are
also sensitive to the background stratospheric state prior to the SSW.

Nonetheless, our ability to predict SSW events into the medium-range (lead times of 3–10 days) and subsea-
sonal time scales and to capture changes to the seasonal likelihood of SSW events has increased substantially
as forecasting systems have increased their model top, stratospheric vertical resolution, and increased
the sophistication of key stratospheric physical processes like gravity wave drag (Domeisen et al., 2020a;
Marshall & Scaife, 2010).

7. Effects on Weather and Climate
7.1. Dynamical Theories for Downward Influence

There are several theoretical reasons to expect that SSWs (and stratospheric variability in general) should
affect surface weather. The main categories of mechanisms are as follows:

1. The remote effects of wave driving (EP-flux divergence) in the stratosphere (Song & Robinson, 2004;
Thompson et al., 2006). The downward effect through the induced meridional circulation has been
termed “downward control” (Haynes et al., 1991).

2. Planetary wave absorption and reflection (Kodera et al., 2016; Perlwitz & Harnik, 2003; Shaw et al., 2010)
3. Direct effects on baroclinicity and baroclinic eddies (Smy & Scott, 2009).
4. The remote effects of stratospheric PV anomalies (Ambaum & Hoskins, 2002; Black, 2002; Hartley

et al., 1998). This category includes studies such as White et al. (2020), in which deep polar temperature
anomalies are prescribed, because they are equivalent to PV anomalies (Baldwin et al., 2019).

All of these mechanisms may contribute to tropospheric effects from SSWs. If we are trying to explain the sur-
face pressure anomalies following SSWs (Figure 3) or shifts in the NAM index (e.g., Baldwin & Dunkerton,
2001), it is clear that the main observed feature is that surface effects are roughly proportional to the anoma-
lous strength of the polar vortex in the lower stratosphere (as measured by temperature, wind, or the NAM
index). In a model study, White et al. (2020) found a robust linear relationship between the strength of the
lower stratospheric warming and the tropospheric response, with the linearity also extending to sudden
stratospheric cooling events. A second observation is that surface pressure anomalies are largest near the
North Pole. Stratospheric wave driving (EP-flux divergence) is not, in general, proportional to the anomalous
strength of the polar vortex. It therefore cannot be the primary explanation for the tropospheric response,
as seen in Figure 3b. When Thompson et al. (2006) examined the connection between stratospheric wave
driving and near-surface wind changes, they found that surface effects were too small, and there was no
indication of a NAM-like pressure pattern, as documented in Baldwin and Dunkerton (2001).

Planetary wave absorption and reflection primarily affects tropospheric wave fields but is not generally pro-
portional to the anomalous strength of the stratospheric polar vortex. A small change in wind induced by an
SSW can be amplified by eddy propagation of transient waves produced in the troposphere. However, this
mechanism does not predict the observed NAM variations or surface amplification. Direct effects on baro-
clinic eddies may be important because they are expected to be proportional to the anomalous strength of
the stratospheric polar vortex and in addition momentum fluxes from transient eddies in midlatitudes drive
annular modes.

The remote effects of stratospheric PV anomalies would be expected to look similar to the NAM pres-
sure pattern, and the effects are proportional to the anomalous strength of the stratospheric polar vortex
(Black, 2002). However, as pointed out by Ambaum and Hoskins (2002), the remote effects of strato-
spheric PV anomalies are expected theoretically to decrease through the troposphere with an e-folding
depth of ∼5 km. PV theory explains very well the atmospheric response down to the tropopause, but it
does not explain the enhanced surface pressure response in Figure 3b. Surface pressure anomalies should
be only ∼20% of those at the tropopause. The surface pressure response is an order of magnitude larger
than PV theory indicates. This “surface amplification” is well reproduced in prediction models (Domeisen
et al., 2020b).

The remote effects of stratospheric PV anomalies, combined with a mechanism to amplify the surface pres-
sure signal, could explain the main observed SSW effects. It is clear from the observations that following
an SSW, tropospheric processes act to move mass into the polar cap, raising Arctic surface pressure. The
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Figure 8. Composites of the 60 days following historical SSWs in the JRA-55 reanalysis for (a) mean sea-level pressure anomalies (hPa), (b) surface temperature
anomalies (K), and (c) precipitation anomalies (mm). Stippling indicates regions significantly different from climatology at the 95% level. Figure from Butler
et al. (2017), ©Copernicus. Used with permission.

low-level buildup of mass over the polar cap cannot come from the stratosphere because the surface pres-
sure anomalies are larger than seen at any stratospheric level. The mechanisms for this movement of mass
have not been fully explained. Both synoptic-scale and planetary-scale waves are found to contribute to
the tropospheric response following SSW events (Domeisen et al., 2013; Garfinkel et al., 2013; Hitchcock &
Simpson, 2014, 2016; Smith & Scott, 2016; Simpson et al., 2009). Baldwin et al. (2019) hypothesized that the
low-level polar cap temperature anomalies (as seen in Figures 3 and 8) are responsible for the movement of
mass through the mechanism of radiative cooling-induced anticyclogenesis (Curry, 1987; Wexler, 1937; also
see modeling results in Hoskins et al., 1985). If the Arctic lower troposphere cools, the air mass contracts
and pulls in additional mass from lower latitudes, raising the average surface pressure over the Arctic, as is
observed.

7.2. Observed and Modeled Downward Impact for Both Hemispheres

Both hemispheres show significant tropospheric effects following stratospheric extreme events. In par-
ticular, SSW events tend to be followed by a negative signature of the NAM in the NH (Baldwin &
Dunkerton, 1999, 2001) and the SAM in the SH. In the NH, the strongest response to SSW events is
observed in the North Atlantic Basin (Figure 8), where the response to SSW events often projects onto
the negative phase of the NAO (Charlton-Perez et al., 2018; Domeisen, 2019). The negative phase of the
NAO is associated with cold air outbreaks over Northern Eurasia and the eastern United States (Kolstad
et al., 2010; King et al., 2019; Lehtonen & Karpechko, 2016) as well as over the Barents and Norwegian
Seas (Afargan-Gerstman et al., 2020), and wet anomalies over Southern Europe (Ayarzagüena, Barriopedro,
et al., 2018) due to the southward shift and persistence of the North Atlantic eddy-driven jet (Maycock
et al., 2020) and the storm track (Afargan-Gerstman & Domeisen, 2020). Further anomalies include positive
temperature anomalies over Greenland and eastern Canada, and subtropical Africa and the Middle East.
Anomalous tropospheric blocking is often observed after SSW events (Labitzke, 1965; Vial et al., 2013).

In the SH, the winter stratospheric variability is weaker compared to the NH due to less wave driving
(Plumb, 1989); meaning, far fewer SSWs have been observed (section 3). Nonetheless, anomalous weaken-
ings of the SH polar vortex, tied to shifts in the seasonal evolution of the vortex, are associated with a negative
SAM pattern and significant surface impacts over Antarctica, Australia, New Zealand, and South America
(Lim et al., 2018, 2019). Following the only major SSW that occurred in September 2002, the SAM stayed per-
sistently negative from September to November (Thompson et al., 2005), with warmer and drier conditions
over southeast Australia, and colder and wetter conditions over New Zealand and southern Chile (Gillett
et al., 2006). Similar impacts were seen following the extreme polar vortex weakening in 2019 (Hendon
et al., 2019).

Furthermore, there are significant effects of SSW events in the tropics, which contribute to a downward path-
way to the troposphere through tropical convective activity. In particular, the induced meridional circulation
associated with the anomalous wave driving leads to anomalous tropical upwelling and anomalous cool-
ing in the tropical tropopause region (visible in Figure 2), modulating tropical convection (Kodera, 2006).
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The anomalous tropical upwelling may also lead to drying of the tropical tropopause layer (Eguchi &
Kodera, 2010; Evan et al., 2015).

The downward response to SSWs tends to be well reproduced in model studies. Models ranging from
idealized dynamical cores to complex coupled model systems show a tropospheric response, though its
persistence is often overestimated, especially in simplified models (Gerber, Polvani et al., 2008; Gerber,
Voronin, et al., 2008). Additionally, idealized model experiments confirm the direction of causality; i.e.,
stratospheric anomalies have a downward impact even if the troposphere is perturbed and does not retain
memory from potential tropospheric precursors (Gerber et al., 2009) or if a SSW is imposed without any
tropospheric precursors (White et al., 2020). This stratospheric downward effect is known to contribute to
surface predictability (Domeisen et al., 2020b; Scaife et al., 2016; Sigmond et al., 2013).

While on average the “downward impact” of SSWs is robust, not all SSWs appear to couple down to the
surface. Most studies agree that about two thirds (Charlton-Perez et al., 2018; Domeisen, 2019; White
et al., 2019) of SSW events are characterized as having a visible downward impact (e.g., persistent negative
phase of the NAM or NAO in the lower troposphere and/or the lower stratosphere, (e.g., Domeisen, 2019;
Karpechko et al., 2017). One factor affecting the appearance of downward impact is the tropospheric NAM
index prior to and at the time of the SSW. If the NAM is already negative, there will be a vertical connection
to the negative stratospheric NAM. On the other hand, if the tropospheric NAM is strongly positive prior to
the SSW, the appearance of vertical coupling is less likely, at least initially. The same is true for the NAO: if
a negative NAO is present at the time of the SSW, the downward coupling is instantaneous but short-lived,
while otherwise the negative NAO often appears after the SSW event (Domeisen et al., 2020). The strato-
sphere is one of several factors influencing the NAM, with most NAM variability being generated within the
troposphere (and from surface interactions). The stratospheric influence becomes clear, only statistically, in
regressions or in composites of many SSWs. Specifically, the concept of surface amplification of the polar
pressure signal (Figure 3) will not be apparent during every SSW, but it becomes clear when averaging over
many events. This is because the troposphere is highly variable, and the stratosphere represents a modest
influence that is active during the cold season.

However, it is still not possible to predict which SSW events will have a visible downward impact. Knowing in
advance or at the time of an SSW event the magnitude of its downward impact could have a significant ben-
efit for medium-range to subseasonal predictions. Several studies have investigated possible stratospheric
causes for the different surface impacts of SSW events:

1. The type of wave propagation during SSW events has been characterized as either absorbing or reflecting
(Kodera et al., 2016) based on wave propagation during the recovery phase of the polar vortex, leading
to different surface impacts. Absorbing-type events are found to induce the canonical negative NAO
response, while reflecting events are associated with wave reflection and blocking in the Pacific Basin.

2. The type of SSW in terms of split or displacement had been suggested to produce different surface
responses (Mitchell et al., 2013; Nakagawa & Yamazaki, 2006; Seviour et al., 2016). However, some other
studies could not find significant difference in the annular mode response in long model simulations
(Maycock & Hitchcock, 2015; White et al., 2019).

3. The duration and strength of the signal in the lower stratosphere have been suggested to contribute to the
duration and strength of the surface impact (Karpechko et al., 2017; Rao et al., 2020b; Runde et al., 2016).
In particular, weak vortex events that are classified as PJO events have a stronger and more persistent
coupling to the troposphere than those events that lack PJO characteristics (Hitchcock et al., 2013).

Further studies have investigated tropospheric sources for different responses to stratospheric forcing, in
terms of jet stream location (Chan & Plumb, 2009; Garfinkel et al., 2013), North Atlantic weather regimes
(Domeisen et al., 2020), Eastern Pacific precursors (Afargan-Gerstman & Domeisen, 2020), and the char-
acteristics of tropospheric precursors to SSW events, in particular Ural blocking (White et al., 2019). The
response is also likely dependent on concurrent tropospheric climate patterns such as ENSO (Oehrlein
et al., 2019; Polvani et al., 2017) and the MJO (Green & Furtado, 2019; Schwartz & Garfinkel, 2017).

8. Effects on the Atmosphere Above the Stratosphere
The effects of SSW events are now recognized to extend well above the stratosphere and can signifi-
cantly alter the chemistry and dynamics of the mesosphere, thermosphere, and ionosphere. They are thus
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a significant component of the short-term variability in the upper atmosphere. This section briefly reviews
the major impacts of SSWs on the upper stratosphere-mesosphere, thermosphere, and ionosphere. More
detailed reviews focused solely on the upper atmosphere can be found in Chandran et al. (2014) and
Chau et al. (2012).

8.1. Impacts on the Upper Stratosphere-Mesosphere

The stratopause often reforms at high altitudes (∼70–80 km) after SSW events, followed by a gradual
descent to its climatological altitude of ∼50–55 km over the ensuing 2–3 weeks (Manney et al., 2008;
Siskind et al., 2010). Such elevated stratopause events occur in roughly one third of NH winters (Chandran
et al., 2013, 2014). Numerical simulations successfully reproduce elevated stratopause events, providing
insight into the formation mechanisms. The elevated stratopause forms due to enhanced westward grav-
ity wave forcing following SSW events, which leads to downwelling and adiabatic heating at high altitudes
where the stratopause reforms (Chandran et al., 2013; Limpasuvan et al., 2016).

SSW events lead to dramatic changes in the mesosphere and lower thermosphere. This includes
high-latitude cooling, as well as a reversal of the zonal mean zonal winds from easterly to westerly (the
opposite as in the stratosphere) (Hoffmann et al., 2007; Labitzke, 1982; Limpasuvan et al., 2016; Liu &
Roble, 2002; Siskind et al., 2010). The mesosphere-lower thermosphere changes during SSWs are primarily
due to changes in gravity wave drag. The weakening, and potential reversal, of the westerly stratospheric
winds leads to more eastward propagating gravity waves reaching the mesosphere-lower thermosphere,
where, upon breaking, they increase the eastward forcing at mesosphere-lower thermosphere altitudes.
The enhanced eastward forcing leads to the reversal of the mesosphere-lower thermosphere winds and
also changes the high-latitude residual circulation from downward to upward, resulting in adiabatic cool-
ing of the mesosphere (Limpasuvan et al., 2016; Liu & Roble, 2002; Siskind et al., 2010). The altered
stratosphere-mesosphere residual circulation during SSW events may also lead to a warming of the sum-
mer hemisphere mesosphere and a decrease in the occurrence of polar mesospheric clouds (Karlsson
et al., 2007, 2009; Körnich & Becker, 2010). Though Körnich and Becker (2010) originally explained the cou-
pling between wintertime SSWs and mesospheric warmings in the summer hemisphere as due to altered
wave forcing in the summer hemisphere, Smith et al. (2020) recently proposed that the interhemispheric
coupling is due to changes in the stratosphere-mesosphere circulation, and not due to modified wave forcing
in the summer hemisphere mesosphere. The mesosphere-lower thermosphere changes that occur during
SSWs are only weakly correlated with the changes that occur in the stratosphere (e.g., Smith et al., 2020),
and there is significant event-to-event variability (Zülicke & Becker, 2013; Zülicke et al., 2018). The lack of a
direct linear correspondence between the stratosphere and mesosphere-lower thermosphere illustrates the
complexity of the coupling processes.

The circulation changes in the upper stratosphere and mesosphere-lower thermosphere that are discussed
above lead to notable changes in chemical transport, altering the distribution of chemical species in the
stratosphere and mesosphere. Changes in chemistry are particularly notable following elevated stratopause
events, when there is significantly enhanced downward transport in the lower mesosphere and upper strato-
sphere (e.g., Siskind et al., 2015). The enhanced downward transport leads to enhancements in NOx and
CO in the stratosphere (Manney, Schwartz et al., 2009; Randall et al., 2006, 2009). Observations of NOx
during the winters of 2004–2009 are shown in Figure 9, clearly illustrating the enhanced downward trans-
port of NOx during the winters of 2004, 2007, and 2009 during which major SSWs occurred. An increase in
NOx is particularly relevant as it can lead to the loss of stratospheric ozone. Though enhanced descent of
trace species is well observed, the descent in numerical models is typically too weak, leading to simulations
with a deficit in NOx and CO in the stratosphere following SSW events (Funke et al., 2017). This is partly
due to inadequate representation of the mesosphere-lower thermosphere dynamics (Meraner et al., 2016;
Pedatella et al., 2018), though may also be due to insufficient source parameterizations (Pettit et al., 2019;
Randall et al., 2015).

The changes in stratosphere-mesosphere chemistry and zonal winds during SSWs influence solar and lunar
atmospheric tides, which, in turn, play a key role in coupling SSWs to variability in the ionosphere and
thermosphere. The most notable changes are an enhancement in the migrating semidiurnal solar and lunar
tides. The migrating semidiurnal solar tide is primarily generated by stratospheric ozone, and Goncharenko
et al. (2012) proposed that it is enhanced during SSWs due to changes in stratospheric ozone. However,
recent numerical experiments by Siddiqui et al. (2019) demonstrate that the migrating semidiurnal solar
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Figure 9. Zonal average ACE-FTS NOx (color) in the NH from 1 January through 31 March of 2004–2009. The white
contour indicates CO = 2.0 ppmv. Measurement latitudes are shown in the top panel as black dots (from Randall, 2009).

tide in the lower thermosphere is primarily enhanced due to altered wave propagation, with ozone only
being a minor (∼20–30%) contributor to the maximum enhancement. Though generally small, the migrating
semidiurnal lunar tide is greatly enhanced during SSWs and can obtain amplitudes equal to or larger than
the migrating semidiurnal solar tide (e.g., Chau et al., 2015). The enhanced lunar tide is attributed to changes
in the background zonal mean zonal winds, which shifts the Pekeris resonance mode of the atmosphere
close to the frequency of the migrating semidiurnal lunar tide (Forbes & Zhang, 2012). The magnitude and
timing of the semidiurnal lunar tide enhancements appear to be correlated with stratospheric variability
(Chau et al., 2015; Zhang & Forbes, 2014), though, as discussed in Chau et al. (2015), there are events that
do not follow the linear relationship.

8.2. Impacts on the Ionosphere

The influence of SSWs on the ionosphere was first hypothesized several decades ago by Stening (1977) and
Stening et al. (1996). However, it was not until Goncharenko and Zhang (2008) and Chau et al. (2009) that
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the impact of SSWs on the ionosphere was unequivocally demonstrated. Since these studies, there has been
considerable research into the role of SSWs on generating variability in the low-latitude and midlatitude
ionosphere.

Observations have revealed that the low-latitude ionosphere exhibits a consistent response to SSWs, with
an increase in vertical plasma drifts and electron densities in the morning and a decrease in the afternoon
(Figure 10). The morning enhancement and afternoon depletion gradually, over the course of several days,
shift toward later local times (e.g., Chau et al., 2009; Fejer et al., 2011; Goncharenko, Chau et al., 2010;
Goncharenko, Coster et al., 2010). This behavior is primarily attributed to the enhancement of the solar
and lunar migrating semidiurnal tides during SSWs, which influence the generation of electric fields via the
E-region dynamo mechanism (Fang et al., 2012; Pedatella & Liu, 2013). The migrating semidiurnal lunar
tide is thought to be especially important in producing the gradual shift of the ionospheric perturbations
toward later local times. As demonstrated by Siddiqui et al. (2015), there is a linear relationship between the
strength of the stratospheric disturbance and the magnitude of the semidiurnal lunar tide in the equatorial
electrojet. Numerical modeling studies indicate that the influence of SSWs on the low-latitude ionosphere
should be larger during solar minimum compared to solar maximum (Fang et al., 2014; Pedatella et al., 2012).
Observations have, however, revealed that equally large responses can occur during solar maximum
(Goncharenko et al., 2013), indicating that factors in the lower-middle atmosphere, such as the SSW strength
and lifetime, may be equally as important as solar activity.

A number of studies have investigated the impact of SSWs on the low-latitude ionosphere in different longi-
tudes. They have found that the characteristic features of the ionosphere variability during SSWs is broadly
similar across longitudes (Anderson & Araujo-Pradere, 2010; Fejer et al., 2010; Siddiqui et al., 2017). There
are, however, differences in the response at different longitudes. In particular, the response is strongest
and tends to occur earliest, over South America. The longitudinal differences are related to the effects of
nonmigrating semidiurnal tides and the influence of Earth's geomagnetic main field (Maute et al., 2015).

One of the reasons that the ionospheric variability during SSWs has attracted attention is that it
potentially enables improved forecasting of ionosphere variability. Due to being primarily an externally
forced system, the ionosphere and thermosphere are less sensitive to initial conditions compared to the
troposphere-stratosphere (Siscoe & Solomon, 2006). This leads to skillful forecasts of the ionosphere being
typically less than 24 hr (Jee et al., 2007). If, however, the external drivers of ionosphere variability can be
well-forecast, then the length of skillful ionosphere forecasts can be extended. The two external drivers of
the ionosphere are solar activity and effects from the lower atmosphere. The relatively good predictability of
SSWs means that they could enable enhanced ionosphere forecast skill by improved forecasting of the lower
atmospheric driver of ionosphere variability. The ability to forecast the low-latitude ionosphere during the
2009 SSW was investigated by Wang et al. (2014) and Pedatella et al. (2018). Both studies found that iono-
spheric variability could be forecast ∼10 days in advance of the SSW, which is consistent with the ability to
predict the occurrence of SSWs. SSWs may thus provide a pathway for improving forecasts of the ionosphere.

The effects of SSWs on the ionosphere extend to middle latitudes and are, perhaps surprisingly, stronger in
the SH. Fagundes et al. (2015) and Goncharenko et al. (2018) both observed notable daytime TEC enhance-
ments in the SH middle-latitude ionosphere. Goncharenko et al. (2018) also observed large decreases in
nighttime ionosphere electron densities at middle latitudes. The mechanism generating variability in the
middle-latitude ionosphere is thought to be changes in the thermosphere neutral winds, and the greater
response in the SH has been interpreted as being due to a larger amplitude semidiurnal lunar tide in the
SH which propagates upwards into the thermosphere where it modulates the neutral winds (Pedatella &
Maute, 2015).

Understanding the formation of small-scale irregularities in the ionosphere, often referred to as spread-F,
equatorial plasma bubbles, or scintillation, is important owing to the disruptive impact of small-scale
irregularities on communications and navigation (e.g., GPS) signals. Determining the role of SSWs on the
formation of ionosphere irregularities is thus of considerable interest. Current observational evidence of
the impact of SSWs on ionosphere irregularities is inconclusive, with some studies suggesting a suppres-
sion of irregularities (de Paula et al., 2015; Patra et al., 2014), and others an enhancement of irregularities
(Stoneback et al., 2011). This is therefore an area that requires considerably more research.
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Figure 10. Observations of ionospheric behavior during the 2009 SSW event. (a) Mean total electron content (TEC) at
15 UT (morning sector, 10 LT at 75◦W). (b) Same as Figure 10a, except for at 21 UT (afternoon sector, 16 LT at 75◦W).
(c) TEC in the morning sector (15 UT) on 27 January 2009, during the SSW. (d) TEC in the afternoon sector (21 UT) on
27 January 2009. (e) Vertical drift observations by the Jicamarca incoherent scatter radar (12◦S, 75◦W) at 200–500 km
altitude. The red line indicates observations on 27 January 2009, and the black line indicates the average behavior for
winter and low solar activity. (f) Change in TEC at 75◦W during the SSW as a function of local time and latitude. From
Goncharenko, Chau et al. (2010).
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8.3. Impacts on the Thermosphere

The impact of SSWs on the thermosphere has received considerably less attention compared to the iono-
sphere. This is primarily due to the limited number of direct observations as well as generally smaller impacts
of SSWs on the thermosphere. Nonetheless, investigations have revealed that there are clear impacts on the
thermosphere temperature, density, and composition.

Numerical simulations by Liu and Roble (2002) first revealed that the effects of SSWs can extend into the
lower thermosphere. They found that the lower thermosphere (∼110–170 km) in the NH warms by∼20–30 K
during a SSW. Warming of the NH lower thermosphere was confirmed observationally by Funke et al. (2010).
Subsequent simulations by Liu et al. (2013) using the GAIA whole atmosphere model revealed that the zonal
mean temperature changes globally and throughout the thermosphere. In particular, the GAIA simulations
revealed upper thermosphere cooling in the tropics and SH, and a global average cooling of ∼10 K during
the 2009 SSW. The global cooling of the thermosphere is largely attributed to the dissipation of enhanced
semidiurnal solar and lunar tides during the SSW, which significantly alters the circulation of the lower
thermosphere (Liu et al., 2014). The cooling of the thermosphere leads to a contraction of the thermosphere
and a reduction in the neutral density at a fixed altitude. Based on satellite orbital drag derived thermosphere
densities, Yamazaki et al. (2015) investigated the thermosphere density response to SSW events. They found
a 3–7% decrease in global mean thermosphere density at altitudes of 250–575 km.

The composition of the thermosphere is also impacted by SSWs, with model simulations and observations
finding a ∼10% reduction in the ratio of atomic oxygen to molecular nitrogen ([O]/[N2]) during SSW events
(Oberheide et al., 2020; Pedatella et al., 2016). This reduction arises due to the enhancement of migrating
semidiurnal solar and lunar tides during the SSW and their influence on the mean meridional circulation.
In particular, the dissipation of the tides induces a westward momentum forcing in the lower thermosphere,
which drives a mean meridional circulation that is upward in the equatorial region, poleward at middle lat-
itudes, and downward at high latitudes. This altered mean meridional circulation leads to an increase of [O]
and a decrease of [N2] in the lower thermosphere that is then communicated to the upper thermosphere via
molecular diffusion (e.g., Yamazaki & Richmond, 2013). As thermospheric [O]/[N2] influences the produc-
tion and loss of O+, the [O]/[N2] reduction during SSWs leads to a decrease in the diurnal and zonal mean
ionosphere electron densities, which are approximately equal to O+ in the F-region ionosphere.

9. Effects on Stratospheric Transport and Composition
The dramatic dynamical perturbations during SSWs are associated with anomalies in the transport cir-
culation and thus lead to anomalies in the distributions of constituents such as ozone and other trace
gases throughout the lower and middle stratosphere, with the impacts on the upper stratosphere and lower
mesosphere discussed in the previous section.

It has been known since the mid-20 century that the winter is dynamically the most active season in the
stratosphere (see Baldwin et al., 2019), and it was correctly anticipated that the largest ozone changes would
also occur during this season. However, measurements of both total column and profile ozone remained
sparse before the 1970s and exhibited large differences among measurement stations, leading to large uncer-
tainties in deriving knowledge on natural variability in ozone and its drivers. Nevertheless, the influence of
SSWs was recognized and could be shown from observations as early as in the late 1950s, with Dütsch (1963)
revealing a close spatial correlation between total column ozone and temperatures in the 50- to 10-hPa
layer during the 1957–1958 SSW over Europe. Based on averaged total column ozone observations over all
available stations north of 40◦N, Züllig (1973) further developed the findings by Dütsch to show that the sea-
sonal evolution of ozone was exhibiting a much more abrupt initial increase during years with SSW events
(1962–1963 and 1967–1968) than during a year without an SSW event (1966–1967).

In the early 1970s, the backscatter ultraviolet (BUV) instrument on Nimbus IV provided the first global ozone
data from space, which served to verify the findings by Dütsch (1963) and Züllig (1973) from single measure-
ment stations of total column ozone during SSWs (Heath, 1974). These global satellite measurements have
continued to date, with a series of SBUV, TOMS, GOME, and OMI instruments flown on different satellites,
providing immediate information on the impact of SSWs on total column ozone distributions in a visual
manner. Figure 11 (left column) shows the total column ozone distribution over the Antarctic region in 2002
as derived from the ECWMF ERA5 reanalysis (Hersbach et al., 2020), before and after the occurrence of an
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Figure 11. Total column ozone distributions in [DU] as obtained from ECMWF ERA5 before (upper panels) and after
(lower panels) SSW events, for the Antarctic polar region in 2002 (left column) and the Arctic polar region in 1989
(right column), respectively.

SSW. This event was the first to be observed in the SH and as mentioned above led to an impressive split of
the 2002 Antarctic ozone hole (Varotsos, 2002; von Savigny et al., 2005), at least partially cutting short ozone
depletion during that year (Weber et al., 2003). A similar event is shown on the right for the winter 1989
over the Arctic region. While the overall ozone levels are much higher than in the SH, the split vortex can
still be clearly identified.

SSWs not only leave a clear signature in total column ozone but also affect the vertical structure of ozone
(e.g., de la Cámara, Abalos, Hitchcock, et al., 2018; Kiesewetter et al., 2010). With the advent of stratospheric
limb sounders in the late 1970s, a wealth of observations had become available to study these features,
including in trace gases other than ozone such as nitrous oxide, carbon monoxide, and nitrogen oxides (e.g.,
Manney, Harwood et al., 2009; Manney, Schwartz et al., 2009; Tao et al., 2015). As shown by Kiesewetter
et al. (2010) and de la Cámara, Abalos, Hitchcock, et al. (2018), after onset of an SSW, ozone anomalies
become positive above 500 K and negative below. The positive anomalies then slowly descend to lower
altitudes, with the middle stratosphere relaxing back to normal trace gas concentrations the fastest. The
enhanced poleward and downward transport during an SSW increases in transport of other species such as
carbon monoxide as well, with the breakdown of the polar vortex enhancing mixing between mid and high
latitudes and flattening of the tracer gradients (Manney, Schwartz et al., 2009). This will lead to cutting short
ozone depletion by halogens in the Arctic polar stratosphere during spring as occurred in the 2012/2013
Arctic winter, when unusually early Arctic ozone loss was curtailed by an early January SSW (Manney et al.,
2015); this is in contrast to the very cold and undisturbed winter of 2010/2011 that featured unprecedented
Arctic ozone loss (Manney et al., 2011).

Due to the highly variable character of SSWs, observations fall short of providing the statistical information
needed to fully explain trace gas transport during these events; hence, models are used to more closely
investigate the drivers behind the transport. Local tracer mixing ratios are the results of a balance between
chemical sources or sinks and transport. In the TEM framework, the equation for a tracer mixing ratio X
can be written as in Equation 4:

𝜕X
𝜕t

= −
[

v∗ 𝜕

𝜕𝑦
+ w∗ 𝜕

𝜕z

]
X + ∇ ⋅ M + S. (4)
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The chemical sources and sinks are represented by S, while the first two terms on the right-hand side rep-
resent transport. Of these, the first term describes slow residual advection, with upward transport in the
tropics and downward transport in the extratropics (see also section 4). The second term is the divergence
of eddy tracer fluxes (of the form

(
v′X ′,w′X ′

)
) and thus describes the effect of mixing processes (M). The

latter arises due to stirring of tracer contours and subsequent small-scale diffusion, leading to no net mass
transport, but, in the presence of tracer gradients to tracer transport.

As described in section 4, the strongly enhanced wave forcing prior and during a SSW event drives a
strongly enhanced residual circulation. High-latitude downwelling is enhanced by up to 1 standard devia-
tion between about 10 days prior the SSW up to the central date (de la Cámara, Abalos, & Hitchcock, 2018).
After the central date, wave propagation is mostly prohibited and subsequently the lack of wave forcing leads
to weakened polar downwelling. The weakening of the residual circulation can persist up to 2 months after
the SSW, in particular for PJO events (de la Cámara, Abalos, & Hitchcock, 2018; Hitchcock et al., 2013). The
extended persistence in the lower stratosphere is partly a result of longer radiative timescales in this region
(Hitchcock et al., 2013), but it has been shown that also enhanced diffusive PV mixing leads to the prolonged
recovery phase of the polar vortex (de la Cámara, Abalos, & Hitchcock, 2018; Lubis et al., 2018).

Next to the anomalous vertical residual advection in the polar vortex region, tracers are affected by anoma-
lous mixing during SSW events. Mixing, as measured by effective diffusivity or equivalent length (a measure
of the disturbances of a tracer contour line relative to a zonally symmetric contour line; see Nakamura, 1996)
is enhanced in the aftermath of SSW events: strongest anomalies are found around 10 days after the cen-
tral date at the vortex edge in the midstratosphere, with anomalies propagating poleward and downward
in the following weeks to months (de la Cámara, Abalos, & Hitchcock, 2018; Lubis et al., 2018). Enhanced
mixing in the lower stratosphere is found to persist for more than 2 months for PJO events (de la Cámara,
Abalos, & Hitchcock, 2018), largely equivalent to “absorptive” events as classified by Lubis et al. (2018).
Those prolonged diffusive mixing anomalies of PV delay the vortex recovery (see above); however, they are
not necessarily associated with enhanced eddy PV fluxes (or negative Eliassen-Palm flux divergence) but
rather are compensated by wave activity transience, as revealed by an analysis of finite-amplitude wave activ-
ity (Lubis et al., 2018). The exact mechanism of the lower stratospheric mixing enhancement remains to be
understood.

In summary, prior to and during an SSW, tracers are affected mostly by enhanced downwelling, while after
the SSW, downwelling is reduced and at the same time, enhanced quasi-horizontal mixing sets in. Together
with the eroded polar vortex, and thus weakened transport barrier (see, e.g., Tao et al., 2015), enhanced
mixing between midlatitude and high-latitude air will affect tracer concentrations after SSW events.

10. Outlook
Despite decades of research, many key aspects of SSWs are still unclear. Even topics that have been
addressed since the discovery of these phenomena, such as the mechanisms driving SSWs, present important
open questions. For instance, the relative importance of tropospheric forcing versus internal stratospheric
dynamics for triggering these events is still under debate.

Another “old” unclear key aspect of SSW research, investigated since the late 1970s, concerns the impact
of factors such as the QBO and ENSO on the likelihood of SSWs. The underlying observational limitation
is that the relatively short observational record (which has large internal variability) must be interpreted
with caution (Polvani et al., 2017). For example, SSW occurrence was significantly reduced in the 1990s
relative to the 2000s (Domeisen, 2019), and it is not clear if this decadal variability occurred by chance or
was perhaps due in part to, say, ocean variability or sea-ice loss (Garfinkel et al., 2017; Hu & Guan, 2018; Sun
et al., 2015). Separating the effects of internal variability on the occurrence of SSWs from other influences
(e.g., ocean variability, solar cycles, and the QBO) is essentially not feasible on a statistical basis alone, due
to the short data record and multiple potential factors influencing SSWs. Fortunately, the improvement of
climate models in representing stratospheric processes as well as the increasing use of model hierarchies
(Maher et al., 2019) might help in quantifying these effects in the future, together with a better knowledge
of theory. Further, as confidence in theory and modeling improves, it is possible that somewhat different
answers are obtained than from the limited observational record.
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Another important category of SSW research revolves around forecasting. The first step is to develop the
best possible forecasts of the stratosphere itself—currently models can predict SSWs with a lead time of
approximately 2 weeks. What are the limitations of the predictability of SSWs within the stratosphere, and
of stratospheric variability in general? To what degree are accurate stratospheric forecasts dependent on
accurate forecasts of the troposphere versus internal stratospheric dynamics?

Looking downward, we need a better dynamical understanding of how SSWs (and stratospheric variability
in general) affect the troposphere and surface weather. The effects of SSWs on surface weather and climate
are well quantified statistically, but not completely understood in detail. In particular, we do not have a
good understanding of how the troposphere amplifies the stratospheric signal. At the same time, the relative
importance of characteristics of this stratospheric signal such as the morphology of vortex splits for the tro-
pospheric fingerprint is still debated. Even interactive stratospheric chemistry has recently been suggested
to modulate the tropospheric response to stratospheric variability associated with SSWs (Calvo et al., 2015;
Haase & Matthes, 2019; Oehrlein et al., 2020). Consequently, we still do not have a confident answer to why
some SSWs appear to have a strong surface impact, whereas the troposphere appears to be unaffected by
some others.

Accurately simulating the effects of the stratosphere on surface weather will depend on identifying those
aspects of the models which require improvement. This is relevant on all timescales from weather fore-
casts to climate projections. Ultimately, to what degree can stratospheric predictions be exploited for surface
weather forecasts? One potentially important aspect is that SSWs have an influence on Arctic surface tem-
peratures for several weeks. Can long-range forecasts of Arctic weather and sea ice movement be improved
through improved stratospheric forecasts and a more accurate representation of stratosphere-troposphere
coupling?

Looking upward, the effects of SSWs above the stratosphere are not well quantified, and it is yet to be
established if these effects are largely limited to SSWs or if the effects are proportional to stratospheric dis-
turbances of either sign. The physical mechanisms by which SSWs impact the upper atmosphere are also
not fully understood, with a number of open questions concerning how SSWs generate variability in the
ionosphere and thermosphere. In a society extremely dependent on technology affected by space weather,
the need for answering these questions will extend scientific curiosity.

Finally, one of the most outstanding questions is whether SSWs will change in the future by climate change.
Will the frequency of SSWs be affected due to increasing greenhouse gas concentrations? Despite many
efforts in the last 30 years (e.g., Butchart et al., 2000; McLandress & Shepherd, 2009; Mitchell et al., 2012;
Rind et al., 1990), the answer remains unclear. An analysis of SSWs during the climate of the Last Glacial
Maximum (20,000–25,000 YBP) showed no significant difference in SSW frequency compared to today
(Fu et al., 2020). Analyses of SSWs in the two most recent multimodel intercomparison projects (Chemistry
Climate Models Initiative (CCMI Morgenstern et al., 2017) and Coupled Model Intercomparison Project
Phase 6 (CMIP6; Eyring et al., 2016)) do not provide a robust answer. Ayarzagüena, Polvani, et al. (2018)
showed, on average in CCMI models, insignificant future changes in SSWs. However, most individual
CMIP6 models project significant changes, but with no consensus on the sign of the change (Ayarzagüena
et al., 2020). Different reasons might explain this uncertainty. First, as already indicated, there are many
unclear aspects about basic dynamics of SSWs, and this translates into differences among models in how
they represent it. Second, biases in the model representation of the mean atmospheric state and how it reacts
to climate change might be another reason. In this sense, the disparity in the distribution of tropospheric
warming (i.e., different relative importance of tropical and polar amplifications) among models might be a
candidate to project different stratospheric forcings. In the stratosphere, the opposing signals with climate
change (i.e., radiative CO2 cooling vs. increased adiabatic warming from a faster Brewer-Dobson circula-
tion) result in a weak amplitude of the total signal (Mitchell et al., 2012). A different relative strength of
these signals among models likely contributes to a disparity in the sign of the change in frequency of SSWs.

After enumerating uncertainties in key research aspects, it becomes clear that reducing most of these uncer-
tainties might benefit humanity through improved weather forecasts, improved climate projections, and
minimising ionospheric effects on communications. Stratospheric research has the potential to benefit from
evolving fields such as machine learning, big data, artificial intelligence, and data mining that are becoming
more feasible as the ability to handle very large data sets becomes more routine. All these new techniques
might boost future SSW research.
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Data Availability Statement
Snow cover data are sourced online (https://climate.rutgers.edu/snowcover/table_area.php?ui_set=1).
JRA-55 data are freely available online (https://jra.kishou.go.jp/JRA-55/index_en.html). ECWMF ERA5
data are accessible via the climate data store (https://cds.climate.copernicus.eu), and ERA-Interim data are
available online (https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/).
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